PEPS for numerical studies of topological order

Anna Francuz

University of Vienna
30 Nov 2023

FMFF Austrian $\begin{gathered}\text { Science Fund }\end{gathered}$

Motivation \& outlook

Experimental relevance

Quantum simulators

Probing Topological Spin Liquids on a Programmable Quantum Simulator, Science 374, 1242 (2021)

Realizing topologically ordered states on a quantum processor, Science 374, 1237-1241 (2021)

iPEPS vs 2D DMRG

- limited to cylinders of finite circumference $L_{y}, \xi \approx 1,2$
- bond dimension χ grows exponentially with the circumference
(B)

- allows simulations in the thermodynamic limit, ξ is orders of magnitudes larger
- naturally incorporates 2D area law, bond dimension D limited by computational cost of algorithms

Plan

(1) Motivation
(2) Setting the stage: gauge freedom, PEPS contraction

- Gauge freedom
- iPEPS contraction
(3) Variational iPEPS optimization

4. Determining topological order

- Characterization of topological order
- Computational aspects
(5) Conclusions

Setting the stage:

1. gauge freedom
2. iPEPS contraction

Gauge transformations and symmetries

Matrix Product States

Projected Entangled Pair States

Gauge transformations and symmetries

Matrix Product States

Projected Entangled Pair States

Gauge transformations and symmetries

Matrix Product States

Projected Entangled Pair States

MPO symmetry of PEPS

Gauge transformations and symmetries

Matrix Product States

Projected Entangled Pair States

MPO symmetry of PEPS

Gauge transformations and symmetries

Matrix Product States

Projected Entangled Pair States

$$
A \neq B \text { but }|\Psi(A)\rangle=|\Psi(B)\rangle
$$

MPO symmetry of PEPS

iPEPS contraction

(A)
(B)

(D)

iPEPS contraction

Corner Transfer Matrix

R. J. Baxter, Journal of Statistical Physics 19, 461 (1978)
T. Nishino and K. Okunishi, J. Phys. Soc. Jpn. 65, 891 (1996)

Boundary MPS

J. Jordan, R. Orús, G. Vidal, F. Verstraete, J. I.Cirac, PRL, 101, 250602 (2008) JV. Zauner-Stauber et al., Phys. Rev. B 97 (2018)

Variational iPEPS optimization

Variational iPEPS optimization

- Goal: optimize the ground state $|\Psi(A)\rangle$

$$
E(A)=\frac{\langle\Psi(A)| \hat{H}|\Psi(A)\rangle}{\langle\Psi(A) \mid \Psi(A)\rangle} \quad \rightarrow \quad 0=\frac{\partial}{\partial A} \frac{\langle\Psi(A)| \hat{H}|\Psi(A)\rangle}{\langle\Psi(A) \mid \Psi(A)\rangle} \Rightarrow\left|\Psi_{g s}\left(A^{\star}\right)\right\rangle .
$$

algorithms: steepest descent, conjugate-gradient, L-BFGS

- Exact gradients within reach of AD:

H-J. Liao, J-G. Liu, L. Wang, and T, Xiang, PRX 9, 031041 (2019)
J. Hasik, D. Poilblanc, F. Becca, SciPost Phys. 10, 012 (2021)

Variational iPEPS optimization

- Goal: optimize the ground state $|\Psi(A)\rangle$

$$
E(A)=\frac{\langle\Psi(A)| \hat{H}|\Psi(A)\rangle}{\langle\Psi(A) \mid \Psi(A)\rangle} \quad \rightarrow \quad 0=\frac{\partial}{\partial A} \frac{\langle\Psi(A)| \hat{H}|\Psi(A)\rangle}{\langle\Psi(A) \mid \Psi(A)\rangle} \Rightarrow\left|\Psi_{g s}\left(A^{\star}\right)\right\rangle .
$$

algorithms: steepest descent, conjugate-gradient, L-BFGS

- Exact gradients within reach of AD:

H-J. Liao, J-G. Liu, L. Wang, and T, Xiang, PRX 9, 031041 (2019)
J. Hasik, D. Poilblanc, F. Becca, SciPost Phys. 10, 012 (2021)

Can be problematic if treated as a black box: divergencies, inaccuracies

Automatic differentiation

Applies chain rule to the cost function automatically:

$$
\begin{aligned}
& F(t)=f(g(k(p(t))))
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial F(t)}{\partial t_{i}}=\frac{\partial f(x)}{\partial x_{j}} \frac{\partial g(y)_{j}}{\partial y_{n}} \frac{\partial k(z)_{n}}{\partial z_{m}} \frac{\partial p(t)_{m}}{\partial t_{i}}
\end{aligned}
$$

Energy gradient

Energy calculated approximately with CTM:

$$
E \approx \tilde{E}=F(C, T, A, H)=
$$

With $\left(C_{k}, T_{k}\right) \equiv x_{k}=f\left(x_{k-1}, A\right)$ its gradient is:

$$
\begin{aligned}
d \tilde{E} & =\frac{\partial F}{\partial A} d A+\frac{\partial F}{\partial x} d x \\
d x & \left.=\frac{\partial f}{\partial A} d A+\frac{\partial f}{\partial x_{n-1}}\left(\frac{\partial f}{\partial A} d A+\frac{\partial f}{\partial x_{n-2}}(\ldots)\right)\right)
\end{aligned}
$$

Energy gradient

Energy calculated approximately with CTM:

With $\left(C_{k}, T_{k}\right) \equiv x_{k}=f\left(x_{k-1}, A\right)$ its gradient is:

$$
\begin{aligned}
d \tilde{E} & =\frac{\partial F}{\partial A} d A+\frac{\partial F}{\partial x} d x \\
d x & \left.=\frac{\partial f}{\partial A} d A+\frac{\partial f}{\partial x_{n-1}}\left(\frac{\partial f}{\partial A} d A+\frac{\partial f}{\partial x_{n-2}}(\ldots)\right)\right)
\end{aligned}
$$

Problems:
(1) costly in memory, need for many iterations
(2) gradient of EIG (SVD) poorly conditioned in case of degenerate spectra
(3) currently only approximate!

Problem 1: memory intensive, many iterations
Solution: fixed point differentiation

$$
d x=\sum_{k=0}^{\infty}\left(\frac{\partial f}{\partial x}\right)^{k} \frac{\partial f}{\partial A} d A=\left(1-\frac{\partial f}{\partial x}\right)^{-1} \frac{\partial f}{\partial A} d A
$$

Problem 1: memory intensive, many iterations
Solution: fixed point differentiation

$$
d x=\sum_{k=0}^{\infty}\left(\frac{\partial f}{\partial x}\right)^{k} \frac{\partial f}{\partial A} d A=\left(1-\frac{\partial f}{\partial x}\right)^{-1} \frac{\partial f}{\partial A} d A
$$

But: requires element-wise convergence $x=f(x, A)$

$$
U C U^{\dagger}=(U \sigma) C\left(\sigma^{\dagger} U^{\dagger}\right) \Rightarrow \hat{T} \xrightarrow{\mathrm{f}} \sigma^{\dagger} \hat{T} \sigma=T .
$$

with σ satisfying additionally $[C, \sigma]=0, \sigma \sigma^{\dagger}=\mathbb{I}$

Problem 2\&3: gradient of EIG(SVD): divergent, approximate

Problem 2\&3: gradient of EIG(SVD): divergent, approximate
Solution: Q-deformed CTM with $Q=\mathbb{I}$ and full M eigedecomposition
regular CTM $M \approx U s U^{\dagger}$

Q-deformed CTM with full M decomposition

$$
M=P C P^{\dagger}+P_{\perp} C_{\perp} P_{\perp}^{\dagger}
$$

$$
\begin{aligned}
& d s=\mathbb{I} \circ\left(U^{\dagger} d M U\right) \\
& d U=U d \omega+U_{\perp} d X \\
& d \omega=F \circ\left(U^{\dagger} d M U\right) \\
& \quad F_{i j}=\frac{1}{s_{j}-s_{i}}, i \neq j \\
& \left(\mathbb{I}-U U^{\dagger}\right) d M U=U_{\perp} d X s
\end{aligned}
$$

$$
\begin{aligned}
& d C=P^{\dagger} d M P \\
& d P=P d \omega+P_{\perp} d X \\
& d \omega=0 \\
& \left(\mathbb{I}-P P^{\dagger}\right) d M P=d P C-\left(\mathbb{I}-P P^{\dagger}\right) M d P
\end{aligned}
$$

Comparison of gradients

State: $|\Psi(A)\rangle: A=\mathcal{A}_{R V B}^{S U(2)}+\beta \mathcal{A}^{S B}$, with $D=3, \chi=160$
Hamiltonian: $H=J_{1} \sum_{i, j \in N N, \alpha} f(\alpha) S_{i}^{\alpha} S_{j}^{\alpha}+J_{2} \sum_{i, j \in N N N} \vec{S}_{i} \cdot \vec{S}_{j}$
with $\operatorname{SU}(2)$ symmetry breaking anisotropy $f([x, y, z])=[-1,1+\beta,-1+\beta]$

- our gradient g_{e}
- Green: $d P=0^{*}$
- Orange: current AD
- Blue: using

Sylvester equation for $d P$
*SPG Crone, P Corboz PRB 101 (11), 115143 (2020)

Determining Topological order

AF, J. Dziarmaga, G. Vidal, L. Cincio, PRB 101, 041108(R)
AF, J. Dziarmaga, PRB 102 (23), 235112
AF, L. Lootens, J. Dziarmaga, F. Verstraete, PRB 104 (19), 195152

Characterization of topological order

(1) Mutual and self statistics - modular data (S, T, c)
(2) Fusion categories - F symbols $F_{d e f}^{a b c}$

Characterization of topological order

(1) Mutual and self statistics - modular data (S, T, c)

- Topological T matrix - self statistics

(2) Fusion categories - F symbols $F_{d e f}^{a b c}$

Characterization of topological order

(1) Mutual and self statistics - modular data (S, T, c)

- Topological T matrix - self statistics
- Topological S matrix - mutual statistics

(2) Fusion categories - F symbols $F_{d e f}^{a b c}$

Characterization of topological order

(1) Mutual and self statistics - modular data (S, T, c)

- Topological T matrix - self statistics
- Topological S matrix - mutual statistics
- Can be extracted from ground states:

$$
\begin{aligned}
& \qquad(S \cdot T)_{a b}=\left\langle\Psi_{b}^{\mathfrak{s t}} \mid \Psi_{a}\right\rangle \\
& \text { Y. Zhang, T. Grover, A. Turner, M. Oshikawa, A. } \\
& \text { Vishwanath, PRB (2012) }
\end{aligned}
$$

(2) Fusion categories $-F$ symbols $F_{d e f}^{a b c}$

Characterization of topological order

(1) Mutual and self statistics - modular data (S, T, c)

- Topological T matrix - self statistics
- Topological S matrix - mutual statistics
- Can be extracted from ground states:

$$
\begin{aligned}
& \qquad(S \cdot T)_{a b}=\left\langle\Psi_{b}^{\mathfrak{s t}} \mid \Psi_{a}\right\rangle \\
& \text { Y. Zhang, T. Grover, A. Turner, M. Oshikawa, A. } \\
& \text { Vishwanath, PRB (2012) }
\end{aligned}
$$

(2) Fusion categories - F symbols $F_{d e f}^{a b c}$

$$
\begin{aligned}
& \left.\left|\Phi_{Z_{2}}\right\rangle=\sum_{\text {all closed strings }} \mid \text { Fos }\right\rangle \\
& \left.\left|\Phi_{d s}\right\rangle=\sum_{\text {all closed strings }}(-1)^{N_{\text {loops }}} \mid \text { POS }\right\rangle
\end{aligned}
$$

Characterization of topological order

(1) Mutual and self statistics - modular data (S, T, c)

- Topological T matrix - self statistics
- Topological S matrix - mutual statistics

- Can be extracted from ground states:

$$
\begin{aligned}
& \qquad(S \cdot T)_{a b}=\left\langle\Psi_{b}^{\mathfrak{s t}} \mid \Psi_{a}\right\rangle \\
& \text { Y. Zhang, T. Grover, A. Turner, M. Oshikawa, A. } \\
& \text { Vishwanath, PRB (2012) }
\end{aligned}
$$

(2) Fusion categories - F symbols $F_{d e f}^{a b c}$

$$
\begin{aligned}
& \left.\left|\Phi_{z_{2}}\right\rangle=\sum_{\text {al domes atringe }} \mid \text { |FODS }\right\rangle \\
& \left.\left|\Phi_{d s}\right\rangle=\sum_{\text {all closed strings }}(-1)^{N_{\text {loops }}} \text { |مOS }\right\rangle \\
& \text { |\% }
\end{aligned}
$$

Characterization of topological order

(1) Mutual and self statistics - modular data (S, T, c)

- Topological T matrix - self statistics
- Topological S matrix - mutual statistics
- Can be extracted from ground states:

$$
\begin{aligned}
& \qquad(S \cdot T)_{a b}=\left\langle\Psi_{b}^{\mathfrak{s t}} \mid \Psi_{a}\right\rangle \\
& \text { Y. Zhang, T. Grover, A. Turner, M. Oshikawa, A. } \\
& \text { Vishwanath, PRB (2012) }
\end{aligned}
$$

(2) Fusion categories - F symbols $F_{d e f}^{a b c}$

$$
\begin{aligned}
& \left.\left|\Phi_{Z_{2}}\right\rangle=\sum_{\text {all closed strings }} \mid \text { คO人 }\right\rangle \\
& \left|\Phi_{d s}\right\rangle=\sum_{\text {all closed strings }}(-1)^{N_{\text {loops }}} \text { |ros) } \\
& \Phi\left(\begin{array}{l}
\mathrm{i} \\
\mathrm{j}
\end{array} \mathrm{~m}_{\mathrm{m}}^{\mathrm{l}} \mathrm{k}_{\mathrm{k}}^{\mathrm{l}}\right)=\sum_{n} F_{l m n}^{i j k} \Phi\binom{\mathrm{i} \mathrm{M} \mathrm{~K}_{\mathrm{k}}^{1}}{\mathrm{k}} \\
& \text { M. A. Levin, X. G. Wen, PRB (2012) }
\end{aligned}
$$

(1) Extracting topological S and T matrices:

Crucial step:
numerical optimization of iMPO symmetries of iPEPS, obeying fusion ring:

$$
Z_{a} \cdot Z_{b}=\sum_{c} N_{a b}^{c} Z_{c}
$$

(2) Calculating F symbols

(1) Extracting topological S and T matrices:

Crucial step:
numerical optimization of iMPO symmetries of iPEPS, obeying fusion ring:

$$
Z_{a} \cdot Z_{b}=\sum_{c} N_{a b}^{c} Z_{c}
$$

(2) Calculating F symbols

Fundamental theorem of MPS:
Gauge transf. $X_{a b}^{c},\left(X_{a b}^{c}\right)^{-1}$
J.I.Cirac, D.Pérez-García, N.Schuch,
F.Verstraete, Annals of Physics (2017)

Computational aspects

Obtaining iMPO symmetries of iPEPS

- Find all boundary iMPO fixed points V_{i} (V . Zauner-Stauber et al, PRB 97, 045145)

Obtaining iMPO symmetries of iPEPS

- Find all boundary iMPO fixed points V_{i} (V . Zauner-Stauber et al, PRB 97, 045145)
- Find all iMPO symmetries and their fusion rules: $Z_{a} Z_{b}=\sum_{c} N_{a b}^{c} Z_{c}$

$$
\min _{z_{a}}\left|V_{i} \cdot Z_{a}-V_{j}\right|^{2}
$$

F-symbols

Symmetry Z with minimal bond dimension obtained from:

$$
\min _{z_{a}}\left|v_{1}^{U} \cdot Z_{a}-v_{a}^{U}\right|^{2}+\left|v_{1}^{D} \cdot Z_{a}^{T}-v_{\bar{a}}^{D}\right|^{2}
$$

X zipper obtained from Y zippers:

Results

AF, J. Dziarmaga, G. Vidal, L. Cincio, PRB 101, 041108(R)
AF, J. Dziarmaga, PRB 102 (23), 235112
AF, L. Lootens, J. Dziarmaga, F. Verstraete, PRB 104 (19), 195152
(1) Extracting topological S and T matrices:

Ferromagnetic perturbation of the toric code:

Correlation length ξ as a function of β and bond dimension χ

(2) Calculating F symbols

(1) Extracting topological S and T matrices:

Kitaev model in Abelian phase:

$$
H=-\sum_{\gamma-l i n k} J_{\gamma} \sigma_{j}^{\gamma} \sigma_{k}^{\gamma}
$$

$$
\begin{gathered}
S=S_{\mathrm{tc}}+\epsilon_{S}, T=T_{\mathrm{tc}}+\epsilon_{T}, \\
\left|\epsilon_{S}\right|_{\max },\left|\epsilon_{T}\right|_{\max } \sim \mathcal{O}\left(10^{-3}\right) \\
\text { A. Kitaev, Annals of Physics (2006) }
\end{gathered}
$$

(2) Calculating F symbols

(1) Extracting topological S and T matrices:

Kitaev model in Abelian phase:

$$
H=-\sum_{\gamma-l i n k} J_{\gamma} \sigma_{j}^{\gamma} \sigma_{k}^{\gamma}
$$

$$
\begin{array}{r}
S=S_{\mathrm{tc}}+\epsilon_{S}, \quad T=T_{\mathrm{tc}}+\epsilon_{T}, \\
\left|\epsilon_{S}\right|_{\max },\left|\epsilon_{T}\right|_{\max } \sim \mathcal{O}\left(10^{-3}\right) \\
\text { A.Kitaev, Annals of Physics (2006) }
\end{array}
$$

(2) Calculating F symbols

For $J=0.44,\left|\epsilon_{F}\right| \sim \mathcal{O}\left(10^{-4}\right)$ $\left|\epsilon_{S}\right|_{\text {max }},\left|\epsilon_{T}\right|_{\max } \sim \mathcal{O}\left(10^{-4}\right)$
(1) Extracting topological S and T matrices:

Longer correlation lengths, $\xi>1$:

Apply local filtering to $d F i b$:

$$
\begin{aligned}
&|\Psi\rangle=\prod_{i} \mathrm{e}^{\beta \sigma_{i}^{2}}\left|\Psi_{d F i b}\right\rangle \\
& \xi=2.3: \\
&\left|\epsilon_{S}\right|_{\max } \sim \mathcal{O}\left(10^{-3}\right), \\
&\left|\epsilon_{T}\right|_{\max } \sim \mathcal{O}\left(10^{-7}\right)
\end{aligned}
$$

(2) Calculating F symbols

(1) Extracting topological S and T matrices:

(2) Calculating F symbols

Longer correlation lengths, $\xi>1$:

$$
\begin{aligned}
&|\Psi\rangle=\prod_{i} \mathrm{e}^{\beta \sigma_{i}^{2}}\left|\Psi_{d F i b}\right\rangle \\
& \xi=2.3: \\
&\left|\epsilon_{S}\right|_{\max } \sim \mathcal{O}\left(10^{-3}\right), \\
&\left|\epsilon_{T}\right|_{\max } \sim \mathcal{O}\left(10^{-7}\right)
\end{aligned}
$$

Apply local filtering to $d F i b$:

$$
\xi=2.3:\left|\epsilon_{F}\right| \sim \mathcal{O}\left(10^{-2}\right)
$$

$$
\left|\epsilon_{S}\right|_{\max } \sim \mathcal{O}\left(10^{-3}\right)
$$

$$
\left|\epsilon_{T}\right|_{\max } \sim \mathcal{O}\left(10^{-6}\right)
$$

(1) Extracting topological S and T matrices:

Perturbation of tensor symmetry:

Vertex violating term:

$$
T \rightarrow T+\epsilon T_{p}
$$

- Fibonacci:

$$
\epsilon=0.1, \epsilon_{T} \sim \epsilon_{S} \sim \mathcal{O}\left(10^{-3}\right)
$$

- lsing:
$\epsilon=0.5, \epsilon_{T} \sim \epsilon S \sim \mathcal{O}\left(10^{-6}\right)$
S. K. Shukla, M. B. Şahinoğlu, F. Pollmann, X. Chen, PRB (2018)
(2) Calculating F symbols

(1) Extracting topological S and T matrices:

(2) Calculating F symbols

$D\left(S_{3}\right)$ and $\operatorname{Rep}\left(S_{3}\right)$ string nets:

$$
\begin{aligned}
& \mathcal{C}_{1}=\operatorname{Rep}\left(S_{3}\right): Z_{1}, Z_{\pi}, Z_{\psi} \\
& \mathcal{C}_{2}=\operatorname{Vec}_{S_{3}}: Z_{1,2,3,4,5,6} \\
& Z(\operatorname{Rep}(S 3))=Z\left(\operatorname{Vec}_{S_{3}}\right)
\end{aligned}
$$

Conclusions \& outlook

- Unbiased iPEPS optimization: change in just few lines of the code

$$
\begin{array}{ll}
d C=\mathbb{I} \circ\left(P^{\dagger} d M P\right) \\
d P & =P d \omega+P_{\perp} d X \\
d \omega=F \circ\left(P^{\dagger} d M P\right) \\
P_{\perp} d X=\left(1-P P^{\dagger}\right) d M P C^{-1}
\end{array} \longrightarrow \quad \begin{aligned}
& d C=P^{\dagger} d M P \\
& d P=P d \omega+P_{\perp} d X \\
& d \omega=0 \\
& \left(\mathbb{I}-P P^{\dagger}\right) d M P=d P C-\left(\mathbb{I}-P P^{\dagger}\right) M d P
\end{aligned}
$$

- Characterization of phases with iPEPS:
- non-local topological S and T matrices
- unitary fusion category - fusion rules $F_{d e f}^{a b c}$
- Apply directly to lattice Hamiltonians (e.g. Kitaev model):
- thermodynamic limit
- no symmetries assumed
- Simulation of experimental setup, realistic Hamiltonians

Conclusions \& outlook

- Unbiased iPEPS optimization: change in just few lines of the code

$$
\begin{array}{ll}
d C=\mathbb{I} \circ\left(P^{\dagger} d M P\right) \\
d P & =P d \omega+P_{\perp} d X \\
d \omega=F \circ\left(P^{\dagger} d M P\right) \\
P_{\perp} d X=\left(1-P P^{\dagger}\right) d M P C^{-1}
\end{array} \longrightarrow \quad \begin{aligned}
& d C=P^{\dagger} d M P \\
& d P=P d \omega+P_{\perp} d X \\
& d \omega=0 \\
& \left(\mathbb{I}-P P^{\dagger}\right) d M P=d P C-\left(\mathbb{I}-P P^{\dagger}\right) M d P
\end{aligned}
$$

- Characterization of phases with iPEPS:
- non-local topological S and T matrices
- unitary fusion category - fusion rules $F_{d e f}^{a b c}$
- Apply directly to lattice Hamiltonians (e.g. Kitaev model):
- thermodynamic limit
- no symmetries assumed
- Simulation of experimental setup, realistic Hamiltonians

Thank you!

