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Example: (N,1) repetition code

encoding: 0~ 0...0,1—~1...1
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We can correctly recover the encoded bit if we have at most
|N/2] — 1 errors.



Error correcting codes

Example: (N,1) repetition code

encoding: 0~ 0...0,1—~1...1
decoding: majority vote.

We can correctly recover the encoded bit if we have at most
|N/2] — 1 errors.

We can think of a classical spin model as a repetition code:

Ising model o .
We encode each bitinto a spin: 0+ +1, 1+ —1 where +1and —1

are two distinguished spin configuration of a particle/atom.
The energy of a collection of spins § = {s;,..., sy}, s; = £1, is given
by

H(GE)=-JY s;s;, J>0,

i~j
where ¢ ~ j means that spin 7 is a “neighbor” of spin j.

Codewords: configurations with minimal energy. 2
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Energy barrier

Assuming our noise model can flip 1 bit at a time:

1. In 1D, we can go from a codeword to a different one, with
constant energy;

2. In 2D, we are have to go through configurations with ~ N energy.



Energy barrier

Assuming our noise model can flip 1 bit at a time:

1. In 1D, we can go from a codeword to a different one, with
constant energy;

2. In 2D, we are have to go through configurations with ~ N energy.



Thermalization of classical memories

Glauber’'s dynamics at temperature 7' =1/4
1. Choose a site at random: x

2. Let AFE be the energy difference if we flip spin at .
We accept the change with probability

o—PAE

PIAR) = 13 cpar

3. Repeat.

This defines an ergodic Markov process, whose stationary state is
Boltzmann distribution:

p(8) ~ exp(—fH(S))



1D vs 2D: thermalization

Mixing time ‘ .
How long does it take for Glauber's dynamics for the Ising model to
reach (close) to equilibrium, as a function of system size N?

1. In 1D, polynomial, for every T:
2. In 2D, for T sufficiently small, takes exponential time!
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1D vs 2D: thermalization

Mixing time ‘ .
How long does it take for Glauber's dynamics for the Ising model to
reach (close) to equilibrium, as a function of system size N?

1. In 1D, polynomial, for every T:
2. In 2D, for T sufficiently small, takes exponential time!

In the latter case, we say that the memory is self-correcting.

Note: 1D Ising model has no critical temperature / phase transition,
2D Ising model does.



Quantum memories

Quantum error correcting codes
Quantum Hamiltonian H on N qudits # := (C%)®" with ground state

space dimension k.

We can encode a vector in C* into the ground state space

C* 3 |¢) > |¢) € groundspace(H) C (C%)®N



Quantum memories

Quantum error correcting codes
Quantum Hamiltonian H on N qudits # := (C%)®" with ground state

space dimension k.

We can encode a vector in C* into the ground state space

C* 3 |¢) > |¢) € groundspace(H) C (C%)®N

Topological quantum memories _
Since topological ordered models have ground states which are

locally indistinguishable, they seem to be a good fit for a quantum
error correcting code.

Which topological ordered models are self-correcting at finite
temperature?

Related question: existence of critical temperature for topological
ordered models.



Thermalization: mathematical
overview



How to model the effect of temperature?

T7>0



Thermalization

Thermal bath
Systems interacting with some (large)

thermal bath at temperature 7' > 0. il Ee

Joint Hamiltonian:

H(A):H ®]lcnv+]lsys®chv+)‘ZSa®Ba /\20

sys
Initial state:
® L exp(—fHy), 8= 2
o Og = —— exp(— ) = =
Po B B Zﬁ p env/» P
System evolution:

psys(t) - Trenv[U)\,t (pO ® Jﬁ)U)T\,tL U}\,t = eXp(ZtH()‘D



Effective evolution

Po = Psys(t) is linear, completely positive, trace preserving (CPTP) for
each ¢t > 0, but hard to describe!
Markovian / Lindbladian effective evolution

d
dfpeff< ) = L(pess(t)) VYt >0, Pet(0) = Py

. exp(w) isa CPTP map for every t >0
Cpg = exp( BH,,,) is invariant: £(pgz) =0



Davies semigroup

Davies’ generator [Comm. Math. Phys. 1974]

£(p) = —i[Hgys, p] +XD(p)

where
= 30356 (S, )08 ~ 5 {p, 52501}

w: Bohr frequencies of H, (differences of eigenvalues)
g, (w) > 0: depend on autocorrelation function of the bath, satisfy

detailed balance g, (—w) = e #g,,(w)

S0 =3 5,(w), et et = 3 cite g (w)g

w



Properties of Davies semigroup

- £ generates a CPTP semigroup;

© pg= Ziﬁ exp(—BH,,,) is invariant: £(pg) = 0;

- If {S,}, = C1, then the semigroup is ergodic: pg is the unique
fixed point

1



Properties of Davies semigroup

- £ generates a CPTP semigroup;

© pg= Ziﬁ exp(—BH,,,) is invariant: £(pg) = 0;

- If {S,}o = C1, then the semigroup is ergodic: pg is the unique
fixed point

In many cases, p.;(t) approximates py,(t) in the weak-coupling limit:

- Davies, 1974-1976: under certain assumptions on the thermal
bath, for every 7 > 0

g =)~ a0, =0

- Merkli, 2020:
SUp [|pege(t) — Pays (f)Hl < ON2
>0

(dependence of C on system size not clear)

1



Locality of Davies generator

H,,. is a quantum Hamiltonian on # = (Cd)®N, which we assume

sys

are arranged on a graph or lattice.

If we assume
* Hg, is alocal commuting Hamiltonian
Hsys :ZHpv [Hvap/} =0 vap/
p
+ the thermal coupling is i.i.d. on each site: S, ; acts on site i for
eachi=1,...,N
then S, ;(w) is local:

E eztwsa’i(w) _ ethSys Sa,ie_ZtHsys _ ethNm Sa,iefthN(i)

w

where w runs over the Bohr frequencies of Hy; = Zpsi H,.



Local Lindbladian

In this case, the Davies generator is also local

D=> "D,
= > 5 s0) (S (S s} = 3{0 S0 s()S0s()'})

[e )

Assumption 1: translation invariance

1. ga,i = Ga
2. 8,(w)and S, ;(w) are related by translation

Assumption 2: “local ergodicity™

L, =C1 Vi

a,i}a

(s



Relaxation time

Spectral gap gap(2): Difference between second largest and largest
eigenvalue (in modulus).

The spectral gap controls how quickly the dissipation happens.

14



Relaxation time

Spectral gap gap(2): Difference between second largest and largest
eigenvalue (in modulus).

The spectral gap controls how quickly the dissipation happens.
Scaling?
- If gap(D) = Q(1) as system size N grows, then the mixing time is
polynomial in IV and we have no self-correction.

- If gap(D) = o(N) (for low enough T) then we might have
self-correction.

14



Is 2D self-correction possible?



Is 2D self-correction possible?

Probably not.



State of the art

- The 2D Toric Code is not self-correcting: gap(2D) = Q(e ¢)
uniform in N
(Alicki-Fannes-Horodecki 2008).

- The 4D Toric Code is self-correcting: gap(2) = O(e=<V) for low T
(Dennis, Kitev, Landahl, Preskill 2002, Alicki-Horodecki®? 2010)

- For Quantum Double models (Kitaev 1997) with G abelian
gap(D) = Q(e~#¢) uniform in N
(Komar, Landon-Cardinal, Temme, 2016)

- Heuristic arguments based on energy barriers (Bravyi, Terhal
2009; Landon-Cardinal, Poulin 2013)



[arxiv:2107.01628, Forum of Mathematics, Sigma 2023]
For any quantum double model with group G, we have that for any

B < oo

gap(D) = MG, B) >0
uniformly in .
What's interesting about our result:

1. Covers non-abelian models (required for universal quantum
computation by braiding anons)

2. We use tensor networks techniques!

What's not so nice:
- Dependence on 3 is worse than previous results ...

- ..but we have ideas on how to improve it and obtain a similar
bound.

16
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Quantum double model with group G

Quantum doubles

- A = Zx x Zy with orientation
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Quantum double model with group G

Quantum doubles
- A = Zx x Zy with orientation
- £,(G) = span{g) | g € G}
- for each edgee e &

%€:€2(G> v 1

- Commuting Hamiltonian T

>4, - Y B -

v vertex p plaquette

where [4,,A,] = [B,,B,] = [4,,B,] =0



The interaction terms

, |91 )(91]
o o 1 192X 194X94]
N gL 2 N\G2 4/\J4
el =3 IS
poere. ] 91 93 9291=1 9593l
where
L9 = |ghhl, LR} = lgh)
heG
R =3 |hg ' )nl, R? |h) = [hg ™)
heG

are the left and right regular representations of G.



Some properties

1. The ground state dimension is independent of .
It is given by the number of flat G-connections or

dim (Hom(Z?,G)/~ G)
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Some properties

1. The ground state dimension is independent of .
It is given by the number of flat G-connections or

dim (Hom(Z?,G)/~ G)

2. Elementary excitations are localized particles.
They can classified by the irreps of D(G) Drinfield’s quantum
double algebra of £, (G).

3. They can support universal quantum computation.
If G is not abelian, braiding and exchanging elementary
excitation is a non-abelian operation. This allows to encode
arbitary quantum computations (topological quantum
computing).

19



Detailed balance

GNS scalar product .
(A,B)g =TrpgA'B, pg= Z—Be*L’HA

Detailed balance . : N
—D is self-adjoint and positive semidefinite with respect to (;,-)4

(D(A), B)g = (A, D(B))g, (D(A),A)s <0.

20



Detailed balance

GNS scalar product .
(A,B)g =TrpgA'B, pg= Z—BefﬁHA

Detailed balance . : N
—D is self-adjoint and positive semidefinite with respect to (;,-)4

(D(A), B)g = (A, D(B))g, (D(A),A)s <0.

We can represent —2 as a local Hamiltonian H such that

~

gap(2) = gap(H)

20



Vectorization
We can identify B(F ) with H3 = H , @ H , via

Q Q) = Q20D |Q), 2= 15§

GeGA

It is an isometry between (B(H ), (-,-)5) and H3.

21



Vectorization
We can identify B(F ) with H3 = H , @ H , via

Q= 1UQ) = @p* @) 19), [9)= 3" 15.9)

It is an isometry between (B(H ), (-,-)5) and H3.

Vectorized Lindbladian
H,[1(Q)) := —«(D.(Q))) ‘
A=A, H,>0 '

His a local, frustration-free
Hamiltonian! Support of H,

21



Ground states

We can characterize the local ground states subspaces of H:

ker > D, ={S,.(w)|e€ X} Clyx®B(Hx.)
ecX

ker Y H, C {(Qpy*®1)12) | Q € B(H x.)}

eeX

In particular, when X = A, the unique ground state of H is the

thermofield double |p;/2> = |¢(1)), which is a local purification of pg.

Warning!
* H,: quantum double model Hamiltonian on % ,, commuting,
degenerate ground states;

- H: non-commuting Hamiltonian on H \ ® H ,, unique ground

~

state |p[1i/2>, gap(H) = gap(D)

22



Tensor networks tools

1. The thermofield double state |p}5/2> can be represented as a
PEPS (Projected Entangled Pair State)

2. PEPS have a frustration-free Hamiltonian associated to them,
called the parent Hamiltonian Hrarent

3. There are conditions on the PEPS that imply that HP3®" has a
spectral gap.

Theorem . .
Let X be the family of rectangles having at most n(/3) plaquettes per

row and column, for n(3) ~ exp(f3). Then there exists a parent
Hamiltonian with unique ground state |p;/2>

gparent — Z P)J5
XeX
such that gap(HP™") > k > 0 uniformly in 8 and N.

We want to compare H with HParent|

23



Comparison

Lemma (Step 1: intermediate projection)
Let I1 the projection on

{(Qof*®1)|0) | Q € B(% x.)}
Then o
Zﬁe > m(i_cmx‘ﬂj)‘(, and HJX > P)%
X

Lemma (Step 2: coarse—graining)
. . c—cBn(B)?
FoX> o 3 (DA, ) 2 e
eeA XeX \eeX n(ﬁ>
Conclusion

gap(D) = gap(H) > Cni/q/ uniformly in N

24



The PEPS parent Hamiltonian




PEPS and Parent Hamiltonian

What is a PEPS? It is a family of states, defined by the contraction of
tensors V, € (CP)®* ® €?. D is called the virtual dimension, d the
physical dimension.
J2
(s

Ja

For each region R, contracting virtual indices in R gives a linear map
from boundary virtual indices to physical indices:

25
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PEPS and Parent Hamiltonian

What is a PEPS? It is a family of states, defined by the contraction of
tensors V, € (CP)®* ® €?. D is called the virtual dimension, d the
physical dimension.
J2
(s

Ja

For each region R, contracting virtual indices in R gives a linear map
from boundary virtual indices to physical indices:

Ve : Hop — Hy

25




Parent Hamiltonian and approximate factorization

Parent Hamiltonian _ .
A local f.f. Hamiltonian whose ground states in a region X are exactly

Ran Vy, for a “good” class of regions & (e.g. all sufficiently large
rectangles).

Boundary state

The boundary state of a region R is a (unormalized) density matrix
on the boundary virtual indices, obtained by tracing out the physical
indices.

Por = VjTeVJe € B(H yz)

26



Approximate factorization

Definition (Approximate factorization) _
Pax 1S e-approximately factorizable if there exists a product state

Opx = ® Oy

ucdR
such that
1/2 _ 1/2
losmoakrag — 1 < e

Kastoryano-L.Perez-Garcia arXiv:1709.07691 , .
For an appropriately chosen family of rectangles {R}, if p is

e(R)-approximately factorizable, with e(R) decaying exponentially in
the diameter of R, then the parent Hamiltonian has a positive
spectral gap (independent of system size).

27



Approximate factorization - 1D

A

In 1D, the boundary state is the Choi-Jamiotkowski matrix of the
transfer operator.

28



Approximate factorization - 1D

A

In 1D, the boundary state is the Choi-Jamiotkowski matrix of the
transfer operator. In the tensor is injective, then It is primitive: E™
converges to a rank-one operator. This implies that

Pog — 0 =01 ® 0y

exponentially fast in |R|. It implies approximate factorization since

pr}/jga&lep(la/a? - ﬂH < Ominllroz — ol

28



Locality of the boundary — quantum double

Using the explicit description of \p}f) as a PEPS, we can bound:

|R| B
Vs e’ —1
90 — Kgpd: < 3|G? , =
lpo AR djeHOO_ G| (1 7{3) Bz G|

where J, is the projection on the support of pg.

formalize. We are going to expand the expression for par

— - o Ve a
OB OO0
QIO 2 IOIOIO
as a sum over maps
g:ép—G , a:Vp—G

satisfying a certain compatibility condition. Let us explain the notation: at each

This implies approximate factorization, choosing oy» = kgrJoz

29



- For all 2D quantum double models with group G

gap(D) > A(G, B) >0
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gap(D) > A(G, B) >0

Work in progress:

- Other 2D topological models (string nets, etc.)? Replace £,(G) by
a (weak)-Hopf algebra. With Andras Molnar (Vienna), Alberto
Ruiz-de-Alarcon (Tibingen).
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- For all 2D quantum double models with group G
gap(2) > X\(G,B) >0

Work in progress:

- Other 2D topological models (string nets, etc.)? Replace £,(G) by
a (weak)-Hopf algebra. With Andras Molnar (Vienna), Alberto
Ruiz-de-Alarcon (Tibingen).

* Improving the dependence on j: prove a spectral gap for } - It

directly, since
S A, >Cesy mt

- the mixing time. Can we improve from a spectral gap estimate to
a log-Sobolev constant estimate? — Gibbs state is a trivial state
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- For all 2D quantum double models with group G
gap(2) > X\(G,B) >0

Work in progress:
- Other 2D topological models (string nets, etc.)? Replace £,(G) by
a (weak)-Hopf algebra. With Andras Molnar (Vienna), Alberto
Ruiz-de-Alarcon (Tibingen).
* Improving the dependence on j: prove a spectral gap for } - It

directly, since
S A, >Cesy mt

- the mixing time. Can we improve from a spectral gap estimate to
a log-Sobolev constant estimate? — Gibbs state is a trivial state

Thank you for your attention!
30



1D models




No-self correction in 1D

Self-correction is impossible in 1D even for classical systems:

1. Ising shows in 1925 that there is no phase transition for his 1D
model;
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No-self correction in 1D

Self-correction is impossible in 1D even for classical systems:

1. Ising shows in 1925 that there is no phase transition for his 1D
model;

2. Holley, Stroock 1989: spectral gap for Glauber dynamics for 1D
Ising model.

3. They actually show a stronger property: log-Sobolev inequality.
Mixing time is logarithmic in N!

Similarly, for quantum systems:

1. Alicki, Fannes, Horodecki 2009: spectral gap quantum
ferromagnetic 1D Ising model

2. Kastoryano, Brandao 2016: spectral gap for 1D commuting
quantum spin chains



log-Sobolev inequality for 1D models

Bardet, Capel, Gao, L. Pérez-Garcia, Rouzé 2023 ) ]
For a commuting 1D spin chain Hamiltonian, the associated ergodic

Davies generator at any inverse temperature 3 < oo satisfies a
log-Sobolev inequality with constant

a(D) > Clog ™ (N)

which implies that the mixing time is logarithmic in V.

This is a culmination of a long line of work:

1.

2
3
4,
5. Capel, L, Pérez-Garcia. IEEE Trans. Inf. Th. 64.7 (2017)

Bardet, Capel, Gao, L., Pérez-Garcia, Rouzé. arXiv:2112.00601

. Bardet, Capel, Gao, L., Pérez-Garcia, Rouzé. Phys. Rev. Lett. 130 (2023)
. Bardet, Capel, L., Pérez-Garcia, Rouzé. J. of Math. Phys. 62 (2021)

Capel, L, Pérez-Garcia. J. of Phys. A 51.48 (2018)



SPT phases




If the system has a symmetry G, with unitary representation u, such
that

[Hy,uy) =0 VgeG
then we could require the existence of a representation U, on the
environment such that

[H\),u,®U,] =0 Vged

In this case, £ satisfies a covariance condition:

Weak symmetry
L(ugpul) = ugL(p)ug



[H(A),UQ(X)UQ] =0 Vgedai

A stronger requirement is that U, = 1 (trivial representation), in
which case

Strong symmetry

Tru,&(p)] =0, orequivalently that(u,) constantVge G

Pers(t)

A sufficient (and necessary, if £ has a full rank invariant state) is that

[S*,uy] =0 Va,VgeG



Strong symmetry vs. ergodicity

If £ is strongly symmetric, then it cannot be ergodic!
{Sate 2{u, g€ G}

If u, is not irreducible, each irrep-sector is invariant, and

ps=_ 05, L)
vy

Open problem: . .
Obtain mixing-time bounds for non-ergodic Davies generators.
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