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Motivation: self-correcting
quantum memories



Error correcting codes

Example: (N,1) repetition code

encoding: 0 ↦ 0 … 0, 1 ↦ 1 … 1
decoding: majority vote.

We can correctly recover the encoded bit if we have at most
⌊𝑁/2⌋ − 1 errors.

We can think of a classical spin model as a repetition code:

Ising model
We encode each bit into a spin: 0 ↦ +1, 1 ↦ −1 where +1 and −1
are two distinguished spin configuration of a particle/atom.

The energy of a collection of spins ⃗𝑠 = {𝑠1, … , 𝑠𝑁}, 𝑠𝑖 = ±1, is given
by

𝐻( ⃗𝑠 ) = −𝐽 ∑
𝑖∼𝑗

𝑠𝑖𝑠𝑗, 𝐽 > 0,

where 𝑖 ∼ 𝑗 means that spin 𝑖 is a “neighbor” of spin 𝑗.

Codewords: configurations with minimal energy.
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1D vs 2D

1D: Z𝑁

point-like elementary
excitations

2D: Z2
𝑁

line-like elementary
excitations
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Energy barrier

Assuming our noise model can flip 1 bit at a time:

1. In 1D, we can go from a codeword to a different one, with
constant energy;

2. In 2D, we are have to go through configurations with ∼ 𝑁 energy.
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Thermalization of classical memories

Glauber’s dynamics at temperature 𝑇 = 1/𝛽

1. Choose a site at random: 𝑥
2. Let Δ𝐸 be the energy difference if we flip spin at 𝑥.
We accept the change with probability

𝑝(Δ𝐸) = 𝑒−𝛽Δ𝐸

1 + 𝑒−𝛽Δ𝐸

3. Repeat.

This defines an ergodic Markov process, whose stationary state is
Boltzmann distribution:

𝑝( ⃗𝑠 ) ∼ exp(−𝛽𝐻( ⃗𝑠 ))
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1D vs 2D: thermalization

Mixing time
How long does it take for Glauber’s dynamics for the Ising model to
reach (close) to equilibrium, as a function of system size 𝑁?

1. In 1D, polynomial, for every 𝑇;
2. In 2D, for 𝑇 sufficiently small, takes exponential time!

In the latter case, we say that the memory is self-correcting.

Note: 1D Ising model has no critical temperature / phase transition,
2D Ising model does.
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Quantum memories

Quantum error correcting codes
Quantum Hamiltonian 𝐻 on 𝑁 qudits ℋ ∶= (C𝑑)⊗𝑁 with ground state
space dimension 𝑘.

We can encode a vector in C𝑘 into the ground state space

C𝑘 ∋ |𝜙⟩ ↦ | ̂𝜙⟩ ∈ groundspace(𝐻) ⊂ (C𝑑)⊗𝑁

Topological quantum memories
Since topological ordered models have ground states which are
locally indistinguishable, they seem to be a good fit for a quantum
error correcting code.

Which topological ordered models are self-correcting at finite
temperature?

Related question: existence of critical temperature for topological
ordered models.
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Thermalization: mathematical
overview



How to model the effect of temperature?

𝑇 > 0
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Thermalization

Thermal bath
Systems interacting with some (large)
thermal bath at temperature 𝑇 > 0. system environment

Joint Hamiltonian:

𝐻(𝜆) ∶= 𝐻sys ⊗ 1env + 1sys ⊗ 𝐻env + 𝜆 ∑
𝛼

𝑆𝛼 ⊗ 𝐵𝛼 𝜆 ≥ 0

Initial state:

𝜌0 ⊗ 𝜎𝛽, 𝜎𝛽 ∶= 1
𝑍𝛽

exp(−𝛽𝐻env), 𝛽 = 1
𝑇

System evolution:

𝜌sys(𝑡) = Trenv[𝑈𝜆,𝑡(𝜌0 ⊗ 𝜎𝛽)𝑈†
𝜆,𝑡], 𝑈𝜆,𝑡 = exp(𝑖𝑡𝐻(𝜆))
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Effective evolution

𝜌0 ↦ 𝜌sys(𝑡) is linear, completely positive, trace preserving (CPTP) for
each 𝑡 > 0, but hard to describe!

Markovian / Lindbladian effective evolution

d
d𝑡

𝜌eff(𝑡) = ℒ(𝜌eff(𝑡)) ∀𝑡 ≥ 0, 𝜌eff(0) = 𝜌0

• exp(𝑡ℒ) is a CPTP map for every 𝑡 ≥ 0
• 𝜌𝛽 = 1

𝑍𝛽
exp(−𝛽𝐻sys) is invariant: ℒ(𝜌𝛽) = 0
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Davies semigroup

Davies’ generator [Comm. Math. Phys. 1974]

ℒ(𝜌) = −𝑖[𝐻sys, 𝜌] + 𝜆2𝒟(𝜌)

where

𝒟(𝜌) = ∑
𝛼

∑
𝜔

̂𝑔𝛼(𝜔)(𝑆𝛼(𝜔)𝜌𝑆𝛼(𝜔)† − 1
2

{𝜌, 𝑆𝛼(𝜔)†𝑆𝛼(𝜔)})

𝜔: Bohr frequencies of 𝐻sys (differences of eigenvalues)
̂𝑔𝛼(𝜔) ≥ 0: depend on autocorrelation function of the bath, satisfy
detailed balance ̂𝑔𝛼(−𝜔) = 𝑒−𝛽𝜔 ̂𝑔𝛼(𝜔)

𝑆𝛼 = ∑
𝜔

𝑆𝛼(𝜔), 𝑒𝑖𝑡𝐻sys𝑆𝛼𝑒−𝑖𝑡𝐻sys = ∑
𝜔

𝑒𝑖𝑡𝜔𝑆𝛼(𝜔)𝑔
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Properties of Davies semigroup

• ℒ generates a CPTP semigroup;
• 𝜌𝛽 = 1

𝑍𝛽
exp(−𝛽𝐻sys) is invariant: ℒ(𝜌𝛽) = 0;

• If {𝑆𝛼}′
𝛼 = C1, then the semigroup is ergodic: 𝜌𝛽 is the unique

fixed point

In many cases, 𝜌eff(𝑡) approximates 𝜌sys(𝑡) in the weak-coupling limit:

• Davies, 1974-1976: under certain assumptions on the thermal
bath, for every 𝜏 > 0

lim
𝜆→0

sup
0≤𝜆2𝑡<𝜏

∥𝜌eff(𝑡) − 𝜌sys(𝑡)∥1
= 0

• Merkli, 2020:
sup
𝑡≥0

∥𝜌eff(𝑡) − 𝜌sys(𝑡)∥1
≤ 𝐶𝜆2

(dependence of 𝐶 on system size not clear)
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Locality of Davies generator

𝐻sys is a quantum Hamiltonian on ℋ = (C𝑑)⊗𝑁, which we assume
are arranged on a graph or lattice.

If we assume

• 𝐻sys is a local commuting Hamiltonian

𝐻sys = ∑
𝑝

𝐻𝑝, [𝐻𝑝, 𝐻𝑝′ ] = 0 ∀𝑝, 𝑝′

• the thermal coupling is i.i.d. on each site: 𝑆𝛼,𝑖 acts on site 𝑖 for
each 𝑖 = 1, … , 𝑁

then 𝑆𝛼,𝑖(𝜔) is local:

∑
𝜔

𝑒𝑖𝑡𝜔𝑆𝛼,𝑖(𝜔) = 𝑒𝑖𝑡𝐻sys𝑆𝛼,𝑖𝑒−𝑖𝑡𝐻sys = 𝑒𝑖𝑡𝐻𝑁(𝑖)𝑆𝛼,𝑖𝑒−𝑖𝑡𝐻𝑁(𝑖)

where 𝜔 runs over the Bohr frequencies of 𝐻𝑁(𝑖) = ∑𝑝∋𝑖 𝐻𝑝.
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Local Lindbladian

In this case, the Davies generator is also local

𝒟 = ∑
𝑖

𝒟𝑖

𝒟𝑖(𝜌) = ∑
𝛼,𝜔

̂𝑔𝛼,𝑖(𝜔)(𝑆𝛼,𝑖(𝜔)𝜌𝑆𝛼,𝑖(𝜔)† − 1
2

{𝜌, 𝑆𝛼,𝑖(𝜔)𝑆𝛼,𝑖(𝜔)†})

Assumption 1: translation invariance

1. ̂𝑔𝛼,𝑖 = ̂𝑔𝛼

2. 𝑆𝛼,𝑖(𝜔) and 𝑆𝛼,𝑗(𝜔) are related by translation

Assumption 2: “local ergodicity”:

{𝑆𝛼,𝑖}′
𝛼 = C1 ∀𝑖
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Relaxation time

Spectral gap gap(𝒟): Difference between second largest and largest
eigenvalue (in modulus).

The spectral gap controls how quickly the dissipation happens.

Scaling?

• If gap(𝒟) = Ω(1) as system size 𝑁 grows, then the mixing time is
polynomial in 𝑁 and we have no self-correction.

• If gap(𝒟) = 𝑜(𝑁) (for low enough 𝑇) then we might have
self-correction.
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Is 2D self-correction possible?

Probably not.
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State of the art

• The 2D Toric Code is not self-correcting: gap(𝒟) = Ω(𝑒−𝛽𝑐)
uniform in 𝑁
(Alicki-Fannes-Horodecki 2008).

• The 4D Toric Code is self-correcting: gap(𝒟) = 𝒪(𝑒−𝑐𝑁) for low 𝑇
(Dennis, Kitev, Landahl, Preskill 2002, Alicki-Horodecki⊗3 2010)

• For Quantum Double models (Kitaev 1997) with 𝐺 abelian
gap(𝒟) = Ω(𝑒−𝛽𝑐) uniform in 𝑁
(Kómár, Landon-Cardinal, Temme, 2016)

• Heuristic arguments based on energy barriers (Bravyi, Terhal
2009; Landon-Cardinal, Poulin 2013)
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Our result

[arxiv:2107.01628, Forum of Mathematics, Sigma 2023]
For any quantum double model with group 𝐺, we have that for any
𝛽 < ∞

gap(𝒟) ≥ 𝜆(𝐺, 𝛽) > 0

uniformly in 𝑁.

What’s interesting about our result:

1. Covers non-abelian models (required for universal quantum
computation by braiding anons)

2. We use tensor networks techniques!

What’s not so nice:

• Dependence on 𝛽 is worse than previous results …
• …but we have ideas on how to improve it and obtain a similar
bound.
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Quantum Double Models



Quantum double model with group G

Quantum doubles

• Λ = Z𝑁 ×Z𝑁 with orientation

• ℓ2(𝐺) = span{|𝑔⟩ ∣ 𝑔 ∈ 𝐺}
• for each edge 𝑒 ∈ ℰ

ℋ𝑒 = ℓ2(𝐺)

• Commuting Hamiltonian

𝐻Λ = − ∑
𝑣 vertex

𝐴𝑣 − ∑
𝑝 plaquette

𝐵𝑝

where [𝐴𝑣, 𝐴𝑣′ ] = [𝐵𝑝, 𝐵𝑝′] = [𝐴𝑣, 𝐵𝑝] = 0
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The interaction terms

𝐴𝑣 = 1
|𝐺|

∑
𝑔∈𝐺

𝑅𝑔 𝐿𝑔

𝑅𝑔

𝐿𝑔

𝐵𝑝 = 1
|𝐺|

∑
𝑔−1

4 𝑔−1
3 𝑔2𝑔1=1 |𝑔3⟩⟨𝑔3|

|𝑔4⟩⟨𝑔4|

|𝑔1⟩⟨𝑔1|

|𝑔2⟩⟨𝑔2|

where

𝐿𝑔 ∶= ∑
ℎ∈𝐺

|𝑔ℎ⟩⟨ℎ| , 𝐿𝑔 |ℎ⟩ = |𝑔ℎ⟩

𝑅𝑔 ∶= ∑
ℎ∈𝐺

∣ℎ𝑔−1⟩⟨ℎ∣ , 𝑅𝑔 |ℎ⟩ = ∣ℎ𝑔−1⟩

are the left and right regular representations of 𝐺.

18



Some properties

1. The ground state dimension is independent of 𝑁.
It is given by the number of flat 𝐺-connections or

dim (Hom(Z2, 𝐺)/∼ 𝐺)

2. Elementary excitations are localized particles.
They can classified by the irreps of 𝐷(𝐺) Drinfield’s quantum
double algebra of ℓ2(𝐺).

3. They can support universal quantum computation.
If 𝐺 is not abelian, braiding and exchanging elementary
excitation is a non-abelian operation. This allows to encode
arbitary quantum computations (topological quantum
computing).
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Detailed balance

GNS scalar product
⟨𝐴, 𝐵⟩𝛽 = Tr 𝜌𝛽𝐴†𝐵, 𝜌𝛽 = 1

𝑍𝛽
𝑒−𝛽𝐻Λ

Detailed balance
−𝒟 is self-adjoint and positive semidefinite with respect to ⟨⋅, ⋅⟩𝛽

⟨𝒟(𝐴), 𝐵⟩𝛽 = ⟨𝐴, 𝒟(𝐵)⟩𝛽, ⟨𝒟(𝐴), 𝐴⟩𝛽 ≤ 0.

We can represent −𝒟 as a local Hamiltonian �̃� such that

gap(𝒟) = gap(�̃�)
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Vectorization

Vectorization
We can identify ℬ(ℋΛ) with ℋ2

Λ = ℋΛ ⊗ ℋΛ via

𝑄 ↦ |𝜄(𝑄)⟩ = (𝑄𝜌1/2
𝛽 ⊗ 1) |Ω⟩ , |Ω⟩ = ∑

⃗𝑔∈𝐺Λ

| ⃗𝑔, ⃗𝑔⟩

It is an isometry between (ℬ(ℋΛ), ⟨⋅, ⋅⟩𝛽) and ℋ2
Λ.

Vectorized Lindbladian
�̃�𝑒 |𝜄(𝑄)⟩ ∶= − |𝜄(𝒟𝑒(𝑄))⟩

�̃� = ∑
𝑒

�̃�𝑒, �̃�𝑒 ≥ 0

�̃� is a local, frustration-free
Hamiltonian! Support of 𝐻𝑒
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Vectorization

Vectorization
We can identify ℬ(ℋΛ) with ℋ2

Λ = ℋΛ ⊗ ℋΛ via

𝑄 ↦ |𝜄(𝑄)⟩ = (𝑄𝜌1/2
𝛽 ⊗ 1) |Ω⟩ , |Ω⟩ = ∑

⃗𝑔∈𝐺Λ

| ⃗𝑔, ⃗𝑔⟩

It is an isometry between (ℬ(ℋΛ), ⟨⋅, ⋅⟩𝛽) and ℋ2
Λ.
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Ground states

We can characterize the local ground states subspaces of �̃�:

ker ∑
𝑒∈𝑋

𝒟𝑒 = {𝑆𝛼,𝑒(𝜔) ∣ 𝑒 ∈ 𝑋}′ ⊂ 1𝑋 ⊗ ℬ(ℋ𝑋𝑐)

ker ∑
𝑒∈𝑋

�̃�𝑒 ⊂ {(𝑄𝜌1/2
𝛽 ⊗ 1) |Ω⟩ ∣ 𝑄 ∈ ℬ(ℋ𝑋𝑐)}

In particular, when 𝑋 = Λ, the unique ground state of �̃� is the
thermofield double |𝜌1/2

𝛽 ⟩ = |𝜄(1)⟩, which is a local purification of 𝜌𝛽.

Warning!

• 𝐻Λ: quantum double model Hamiltonian on ℋΛ, commuting,
degenerate ground states;

• �̃�: non-commuting Hamiltonian on ℋΛ ⊗ ℋΛ, unique ground
state |𝜌1/2

𝛽 ⟩, gap(�̃�) = gap(𝒟)
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Tensor networks tools

1. The thermofield double state |𝜌1/2
𝛽 ⟩ can be represented as a

PEPS (Projected Entangled Pair State)
2. PEPS have a frustration-free Hamiltonian associated to them,
called the parent Hamiltonian 𝐻parent

3. There are conditions on the PEPS that imply that 𝐻parent has a
spectral gap.

Theorem
Let 𝒳 be the family of rectangles having at most 𝑛(𝛽) plaquettes per
row and column, for 𝑛(𝛽) ∼ exp(𝛽). Then there exists a parent
Hamiltonian with unique ground state |𝜌1/2

𝛽 ⟩

𝐻parent = ∑
𝑋∈𝒳

𝑃 ⟂
𝑋

such that gap(𝐻parent) ≥ 𝜅 > 0 uniformly in 𝛽 and 𝑁.

We want to compare �̃� with 𝐻parent!
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Comparison

Lemma (Step 1: intermediate projection)
Let Π𝑋 the projection on

{(𝑄𝜌1/2
𝛽 ⊗ 1) |Ω⟩ ∣ 𝑄 ∈ ℬ(ℋ𝑋𝑐)}

Then
∑
𝑒∈𝑋

�̃�𝑒 ≥ 𝐶
|𝑋|

𝑒−𝑐𝛽|𝑋|Π⟂
𝑋, and Π⟂

𝑋 ≥ 𝑃 ⟂
𝑋 .

Lemma (Step 2: coarse-graining)

�̃� = ∑
𝑒∈Λ

�̃�𝑒 ≥ 1
𝑛(𝛽)4 ∑

𝑋∈𝒳
(∑

𝑒∈𝑋
�̃�𝑒) ≥ 𝐶𝑒−𝑐𝛽𝑛(𝛽)2

𝑛(𝛽)4 𝐻parent

Conclusion

gap(𝒟) = gap(�̃�) ≥ 𝐶𝑒−𝑐𝛽𝑛(𝛽)2

𝑛(𝛽)4 𝜅 uniformly in 𝑁
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The PEPS parent Hamiltonian



PEPS and Parent Hamiltonian

What is a PEPS? It is a family of states, defined by the contraction of
tensors 𝑉𝑒 ∈ (C𝐷)⊗4 ⊗ C𝑑. 𝐷 is called the virtual dimension, 𝑑 the
physical dimension.

For each region ℛ, contracting virtual indices in ℛ gives a linear map
from boundary virtual indices to physical indices:

𝑉ℛ ∶ ℋ𝜕ℛ ⟶ ℋℛ

25



PEPS and Parent Hamiltonian

What is a PEPS? It is a family of states, defined by the contraction of
tensors 𝑉𝑒 ∈ (C𝐷)⊗4 ⊗ C𝑑. 𝐷 is called the virtual dimension, 𝑑 the
physical dimension.

For each region ℛ, contracting virtual indices in ℛ gives a linear map
from boundary virtual indices to physical indices:

𝑉ℛ ∶ ℋ𝜕ℛ ⟶ ℋℛ

25



PEPS and Parent Hamiltonian

What is a PEPS? It is a family of states, defined by the contraction of
tensors 𝑉𝑒 ∈ (C𝐷)⊗4 ⊗ C𝑑. 𝐷 is called the virtual dimension, 𝑑 the
physical dimension.

For each region ℛ, contracting virtual indices in ℛ gives a linear map
from boundary virtual indices to physical indices:

𝑉ℛ ∶ ℋ𝜕ℛ ⟶ ℋℛ

25



Parent Hamiltonian and approximate factorization

Parent Hamiltonian
A local f.f. Hamiltonian whose ground states in a region ℛ are exactly
Ran 𝑉ℛ, for a “good” class of regions ℛ (e.g. all sufficiently large
rectangles).

Boundary state
The boundary state of a region ℛ is a (unormalized) density matrix
on the boundary virtual indices, obtained by tracing out the physical
indices.

𝜌𝜕ℛ = 𝑉 †
ℛ𝑉ℛ ∈ ℬ(ℋ𝜕ℛ)
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Approximate factorization

Definition (Approximate factorization)
𝜌𝜕ℛ is 𝜖-approximately factorizable if there exists a product state

𝜎𝜕ℛ = ⨂
𝑢∈𝜕ℛ

𝜎𝑥

such that
‖𝜌1/2

𝜕ℛ 𝜎−1
𝜕ℛ𝜌1/2

𝜕ℛ − 1‖ ≤ 𝜀

Kastoryano-L.Perez-Garcia arXiv:1709.07691
For an appropriately chosen family of rectangles {ℛ}, if 𝜌ℛ is
𝜖(ℛ)-approximately factorizable, with 𝜖(ℛ) decaying exponentially in
the diameter of ℛ, then the parent Hamiltonian has a positive
spectral gap (independent of system size).
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Approximate factorization – 1D

In 1D, the boundary state is the Choi-Jamiołkowski matrix of the
transfer operator.

In the tensor is injective, then E is primitive: E𝑛

converges to a rank-one operator. This implies that

𝜌𝜕ℛ → 𝜎 = 𝜎1 ⊗ 𝜎2

exponentially fast in |ℛ|. It implies approximate factorization since

∥𝜌1/2
𝜕ℛ 𝜎−1

𝜕ℛ𝜌1/2
𝜕ℛ − 1∥ ≤ 𝜎−1

min‖𝜌𝜕ℛ − 𝜎‖
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Locality of the boundary – quantum double

Using the explicit description of |𝜌1/2
𝛽 ⟩ as a PEPS, we can bound:

‖𝜌𝜕ℛ − 𝜅𝜕ℛ𝐽𝜕ℛ‖∞ ≤ 3|𝐺|2(
𝛾𝛽

1 + 𝛾𝛽
)

|ℛ|

, 𝛾𝛽 = 𝑒𝛽 − 1
|𝐺|

where 𝐽𝜕ℛ is the projection on the support of 𝜌𝜕ℛ.

This implies approximate factorization, choosing 𝜎𝜕ℛ = 𝜅𝜕ℛ𝐽𝜕ℛ
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Outlook

• For all 2D quantum double models with group 𝐺

gap(𝒟) ≥ 𝜆(𝐺, 𝛽) > 0

Work in progress:

• Other 2D topological models (string nets, etc.)? Replace ℓ2(𝐺) by
a (weak)-Hopf algebra. With András Molnár (Vienna), Alberto
Ruiz-de-Alarcón (Tübingen).

• Improving the dependence on 𝛽: prove a spectral gap for ∑𝑒 Π⟂
𝑒

directly, since
∑

𝑒
�̃�𝑒 ≥ 𝐶𝑒−𝑐𝛽 ∑

𝑒
Π⟂

𝑒

• the mixing time. Can we improve from a spectral gap estimate to
a log-Sobolev constant estimate? → Gibbs state is a trivial state

Thank you for your attention!
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1D models



No-self correction in 1D

Self-correction is impossible in 1D even for classical systems:

1. Ising shows in 1925 that there is no phase transition for his 1D
model;

2. Holley, Stroock 1989: spectral gap for Glauber dynamics for 1D
Ising model.

3. They actually show a stronger property: log-Sobolev inequality.
Mixing time is logarithmic in 𝑁!

Similarly, for quantum systems:

1. Alicki, Fannes, Horodecki 2009: spectral gap quantum
ferromagnetic 1D Ising model

2. Kastoryano, Brandao 2016: spectral gap for 1D commuting
quantum spin chains
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log-Sobolev inequality for 1D models

Bardet, Capel, Gao, L. Pérez-García, Rouzé 2023
For a commuting 1D spin chain Hamiltonian, the associated ergodic
Davies generator at any inverse temperature 𝛽 < ∞ satisfies a
log-Sobolev inequality with constant

𝛼(𝒟) ≥ 𝐶 log−1(𝑁)

which implies that the mixing time is logarithmic in 𝑁.

This is a culmination of a long line of work:

1. Bardet, Capel, Gao, L., Pérez-García, Rouzé. arXiv:2112.00601

2. Bardet, Capel, Gao, L., Pérez-García, Rouzé. Phys. Rev. Lett. 130 (2023)

3. Bardet, Capel, L., Pérez-García, Rouzé. J. of Math. Phys. 62 (2021)

4. Capel, L., Pérez-García. J. of Phys. A 51.48 (2018)

5. Capel, L., Pérez-García. IEEE Trans. Inf. Th. 64.7 (2017)



SPT phases



Symmetries

If the system has a symmetry 𝐺, with unitary representation 𝑢𝑔 such
that

[𝐻sys, 𝑢𝑔] = 0 ∀𝑔 ∈ 𝐺

then we could require the existence of a representation 𝑈𝑔 on the
environment such that

[𝐻(𝜆), 𝑢𝑔 ⊗ 𝑈𝑔] = 0 ∀𝑔 ∈ 𝐺

In this case, ℒ satisfies a covariance condition:

Weak symmetry
ℒ(𝑢𝑔𝜌𝑢†

𝑔) = 𝑢𝑔ℒ(𝜌)𝑢†
𝑔



Symmetries

[𝐻(𝜆), 𝑢𝑔 ⊗ 𝑈𝑔] = 0 ∀𝑔 ∈ 𝐺

A stronger requirement is that 𝑈𝑔 = 1 (trivial representation), in
which case

Strong symmetry

Tr[𝑢𝑔ℒ(𝜌)] = 0, or equivalently that ⟨𝑢𝑔⟩
𝜌eff(𝑡)

constant ∀𝑔 ∈ 𝐺

A sufficient (and necessary, if ℒ has a full rank invariant state) is that

[𝑆𝛼, 𝑢𝑔] = 0 ∀𝛼, ∀𝑔 ∈ 𝐺



Strong symmetry vs. ergodicity

If ℒ is strongly symmetric, then it cannot be ergodic!

{𝑆𝛼}′
𝛼 ⊇ {𝑢𝑔 ∣ 𝑔 ∈ 𝐺}

If 𝑢𝑔 is not irreducible, each irrep-sector is invariant, and

𝜌𝛽 = ∑
𝛾

𝜌(𝛾)
𝛽 , ℒ(𝜌(𝑔𝑎𝑚𝑚𝑎)

𝛽 )

Open problem:
Obtain mixing-time bounds for non-ergodic Davies generators.
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