Thermalization of topological order

Angelo Lucia (Universidad Complutense de Madrid/ICMAT)
04/12/2023 - TOPO23 Workshop - Tübingen
Joint work with David Pérez-García (UCM/ICMAT), Antonio Pérez-Hernández (UNED).

Outline

Motivation: self-correcting quantum memories

Thermalization: mathematical overview

Quantum Double Models

The PEPS parent Hamiltonian

Motivation: self-correcting quantum memories

Error correcting codes

Example: ($\mathrm{N}, 1$) repetition code
encoding: $0 \mapsto 0 \ldots 0,1 \mapsto 1 \ldots 1$ decoding: majority vote.

We can correctly recover the encoded bit if we have at most $\lfloor N / 2\rfloor-1$ errors.

Error correcting codes

Example: ($\mathrm{N}, 1$) repetition code
encoding: $0 \mapsto 0 \ldots 0,1 \mapsto 1 \ldots 1$ decoding: majority vote.

We can correctly recover the encoded bit if we have at most $\lfloor N / 2\rfloor-1$ errors.
We can think of a classical spin model as a repetition code:
Ising model
We encode each bit into a spin: $0 \mapsto+1, \quad 1 \mapsto-1$ where +1 and -1 are two distinguished spin configuration of a particle/atom.

The energy of a collection of spins $\vec{s}=\left\{s_{1}, \ldots, s_{N}\right\}, s_{i}= \pm 1$, is given by

$$
H(\vec{s})=-J \sum_{i \sim j} s_{i} s_{j}, \quad J>0,
$$

where $i \sim j$ means that spin i is a "neighbor" of spin j.
Codewords: configurations with minimal energy.

1D vs 2D

1D: \mathbb{Z}_{N}
2D: \mathbb{Z}_{N}^{2}

1D vs 2D

1D: \mathbb{Z}_{N}
2D: \mathbb{Z}_{N}^{2}

1D vs 2D

1D: \mathbb{Z}_{N}
2D: \mathbb{Z}_{N}^{2}

1D vs 2D

1D: \mathbb{Z}_{N}
2D: \mathbb{Z}_{N}^{2}

point-like elementary excitations

1D vs 2D

1D: \mathbb{Z}_{N}
2D: \mathbb{Z}_{N}^{2}

point-like elementary excitations

1D vs 2D

1D: \mathbb{Z}_{N}
2D: \mathbb{Z}_{N}^{2}

point-like elementary excitations

1D vs 2D

1D: \mathbb{Z}_{N}
2D: \mathbb{Z}_{N}^{2}

point-like elementary excitations

1 D vs 2D

1D: \mathbb{Z}_{N}
2D: \mathbb{Z}_{N}^{2}

point-like elementary excitations
line-like elementary excitations

Energy barrier

Assuming our noise model can flip 1 bit at a time:

1. In 1D, we can go from a codeword to a different one, with constant energy;
2. In 2D, we are have to go through configurations with $\sim N$ energy.

Energy barrier

Assuming our noise model can flip 1 bit at a time:

1. In 1D, we can go from a codeword to a different one, with constant energy;
2. In 2D, we are have to go through configurations with $\sim N$ energy.

Thermalization of classical memories

Glauber's dynamics at temperature $T=1 / \beta$

1. Choose a site at random: x
2. Let ΔE be the energy difference if we flip spin at x.

We accept the change with probability

$$
p(\Delta E)=\frac{e^{-\beta \Delta E}}{1+e^{-\beta \Delta E}}
$$

3. Repeat.

This defines an ergodic Markov process, whose stationary state is Boltzmann distribution:

$$
p(\vec{s}) \sim \exp (-\beta H(\vec{s}))
$$

1D vs 2D: thermalization

Mixing time
How long does it take for Glauber's dynamics for the Ising model to reach (close) to equilibrium, as a function of system size N ?

1. In 1D, polynomial, for every T,
2. In 2D, for T sufficiently small, takes exponential time!

1D vs 2D: thermalization

Mixing time
How long does it take for Glauber's dynamics for the Ising model to reach (close) to equilibrium, as a function of system size N ?

1. In 1D, polynomial, for every T,
2. In 2D, for T sufficiently small, takes exponential time!

1D vs 2D: thermalization

Mixing time
How long does it take for Glauber's dynamics for the Ising model to reach (close) to equilibrium, as a function of system size N ?

1. In 1D, polynomial, for every T,
2. In 2D, for T sufficiently small, takes exponential time!

In the latter case, we say that the memory is self-correcting.

Note: 1D Ising model has no critical temperature / phase transition, 2D Ising model does.

Quantum memories

Quantum error correcting codes
Quantum Hamiltonian H on N qudits $\mathcal{H}:=\left(\mathbb{C}^{d}\right)^{\otimes N}$ with ground state space dimension k.
We can encode a vector in \mathbb{C}^{k} into the ground state space

$$
\mathbb{C}^{k} \ni|\phi\rangle \mapsto|\hat{\phi}\rangle \in \text { groundspace }(H) \subset\left(\mathbb{C}^{d}\right)^{\otimes N}
$$

Quantum memories

Quantum error correcting codes
Quantum Hamiltonian H on N qudits $\mathcal{H}:=\left(\mathbb{C}^{d}\right)^{\otimes N}$ with ground state space dimension k.

We can encode a vector in \mathbb{C}^{k} into the ground state space

$$
\mathbb{C}^{k} \ni|\phi\rangle \mapsto|\hat{\phi}\rangle \in \operatorname{groundspace}(H) \subset\left(\mathbb{C}^{d}\right)^{\otimes N}
$$

Topological quantum memories
Since topological ordered models have ground states which are locally indistinguishable, they seem to be a good fit for a quantum error correcting code.

Which topological ordered models are self-correcting at finite temperature?

Related question: existence of critical temperature for topological ordered models.

Thermalization: mathematical overview

How to model the effect of temperature?

$$
T>0
$$

Thermalization

Thermal bath
Systems interacting with some (large) thermal bath at temperature $T>0$.

system $==$ environment

Joint Hamiltonian:

$$
H(\lambda):=H_{\mathrm{sys}} \otimes \mathbb{1}_{\mathrm{env}}+\mathbb{1}_{\mathrm{sys}} \otimes H_{\mathrm{env}}+\lambda \sum_{\alpha} S_{\alpha} \otimes B_{\alpha} \quad \lambda \geq 0
$$

Initial state:

$$
\rho_{0} \otimes \sigma_{\beta}, \quad \sigma_{\beta}:=\frac{1}{Z_{\beta}} \exp \left(-\beta H_{\text {env }}\right), \quad \beta=\frac{1}{T}
$$

System evolution:

$$
\rho_{\mathrm{sys}}(t)=\operatorname{Tr}_{\mathrm{env}}\left[U_{\lambda, t}\left(\rho_{0} \otimes \sigma_{\beta}\right) U_{\lambda, t}^{\dagger}\right], \quad U_{\lambda, t}=\exp (i t H(\lambda))
$$

Effective evolution

$\rho_{0} \mapsto \rho_{\text {sys }}(t)$ is linear, completely positive, trace preserving (CPTP) for each $t>0$, but hard to describe!

Markovian / Lindbladian effective evolution

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \rho_{\mathrm{eff}}(t)=\mathcal{L}\left(\rho_{\mathrm{eff}}(t)\right) \quad \forall t \geq 0, \quad \rho_{\mathrm{eff}}(0)=\rho_{0}
$$

- $\exp (t \mathcal{L})$ is a CPTP map for every $t \geq 0$
- $\rho_{\beta}=\frac{1}{Z_{\beta}} \exp \left(-\beta H_{\text {sys }}\right)$ is invariant: $\mathcal{L}\left(\rho_{\beta}\right)=0$

Davies semigroup

Davies' generator [Comm. Math. Phys. 1974]

$$
\mathcal{L}(\rho)=-i\left[H_{\mathrm{sys}}, \rho\right]+\lambda^{2} \mathcal{D}(\rho)
$$

where

$$
\mathcal{D}(\rho)=\sum_{\alpha} \sum_{\omega} \hat{g}_{\alpha}(\omega)\left(S_{\alpha}(\omega) \rho S_{\alpha}(\omega)^{\dagger}-\frac{1}{2}\left\{\rho, S_{\alpha}(\omega)^{\dagger} S_{\alpha}(\omega)\right\}\right)
$$

ω : Bohr frequencies of $H_{\text {sys }}$ (differences of eigenvalues)
$\hat{g}_{\alpha}(\omega) \geq 0$: depend on autocorrelation function of the bath, satisfy detailed balance $\hat{g}_{\alpha}(-\omega)=e^{-\beta \omega} \hat{g}_{\alpha}(\omega)$

$$
S_{\alpha}=\sum_{\omega} S_{\alpha}(\omega), \quad e^{i t H_{\mathrm{sys}}} S_{\alpha} e^{-i t H_{\mathrm{sys}}}=\sum_{\omega} e^{i t \omega} S_{\alpha}(\omega) g
$$

Properties of Davies semigroup

- \mathcal{L} generates a CPTP semigroup;
- $\rho_{\beta}=\frac{1}{Z_{\beta}} \exp \left(-\beta H_{\text {sys }}\right)$ is invariant: $\mathcal{L}\left(\rho_{\beta}\right)=0$;
- If $\left\{S_{\alpha}\right\}_{\alpha}^{\prime}=\mathbb{C} \mathbb{1}$, then the semigroup is ergodic: ρ_{β} is the unique fixed point

Properties of Davies semigroup

- \mathcal{L} generates a CPTP semigroup;
- $\rho_{\beta}=\frac{1}{Z_{\beta}} \exp \left(-\beta H_{\text {sys }}\right)$ is invariant: $\mathcal{L}\left(\rho_{\beta}\right)=0$;
- If $\left\{S_{\alpha}\right\}_{\alpha}^{\prime}=\mathbb{C} 1$, then the semigroup is ergodic: ρ_{β} is the unique fixed point

In many cases, $\rho_{\text {eff }}(t)$ approximates $\rho_{\text {sys }}(t)$ in the weak-coupling limit:

- Davies, 1974-1976: under certain assumptions on the thermal bath, for every $\tau>0$

$$
\lim _{\lambda \rightarrow 0} \sup _{0 \leq \lambda^{2} t<\tau}\left\|\rho_{\text {eff }}(t)-\rho_{\text {sys }}(t)\right\|_{1}=0
$$

- Merkli, 2020:

$$
\sup _{t \geq 0}\left\|\rho_{\text {eff }}(t)-\rho_{\text {sys }}(t)\right\|_{1} \leq C \lambda^{2}
$$

(dependence of C on system size not clear)

Locality of Davies generator

$H_{\text {sys }}$ is a quantum Hamiltonian on $\mathcal{H}=\left(\mathbb{C}^{d}\right)^{\otimes N}$, which we assume are arranged on a graph or lattice.
If we assume

- $H_{\text {sys }}$ is a local commuting Hamiltonian

$$
H_{\mathrm{sys}}=\sum_{p} H_{p}, \quad\left[H_{p}, H_{p^{\prime}}\right]=0 \quad \forall p, p^{\prime}
$$

- the thermal coupling is i.i.d. on each site: $S_{\alpha, i}$ acts on site i for each $i=1, \ldots, N$
then $S_{\alpha, i}(\omega)$ is local:

$$
\sum_{\omega} e^{i t \omega} S_{\alpha, i}(\omega)=e^{i t H_{\mathrm{sys}}} S_{\alpha, i} e^{-i t H_{\mathrm{sys}}}=e^{i t H_{N(i)}} S_{\alpha, i} e^{-i t H_{N(i)}}
$$

where ω runs over the Bohr frequencies of $H_{N(i)}=\sum_{p \ni i} H_{p}$.

Local Lindbladian

In this case, the Davies generator is also local

$$
\begin{gathered}
\mathcal{D}=\sum_{i} \mathcal{D}_{i} \\
\mathcal{D}_{i}(\rho)=\sum_{\alpha, \omega} \hat{g}_{\alpha, i}(\omega)\left(S_{\alpha, i}(\omega) \rho S_{\alpha, i}(\omega)^{\dagger}-\frac{1}{2}\left\{\rho, S_{\alpha, i}(\omega) S_{\alpha, i}(\omega)^{\dagger}\right\}\right)
\end{gathered}
$$

Assumption 1: translation invariance

1. $\hat{g}_{\alpha, i}=\hat{g}_{\alpha}$
2. $S_{\alpha, i}(\omega)$ and $S_{\alpha, j}(\omega)$ are related by translation

Assumption 2: "local ergodicity":

$$
\left\{S_{\alpha, i}\right\}_{\alpha}^{\prime}=\mathbb{C} \mathbb{1} \quad \forall i
$$

Relaxation time

Spectral gap $\operatorname{gap}(\mathcal{D})$: Difference between second largest and largest eigenvalue (in modulus).

The spectral gap controls how quickly the dissipation happens.

Relaxation time

Spectral gap $\operatorname{gap}(\mathcal{D})$: Difference between second largest and largest eigenvalue (in modulus).

The spectral gap controls how quickly the dissipation happens.
Scaling?

- If $\operatorname{gap}(\mathcal{D})=\Omega(1)$ as system size N grows, then the mixing time is polynomial in N and we have no self-correction.
- If $\operatorname{gap}(\mathcal{D})=o(N)$ (for low enough T) then we might have self-correction.

Is 2D self-correction possible?

Is 2D self-correction possible?
Probably not.

State of the art

- The 2D Toric Code is not self-correcting: $\operatorname{gap}(\mathcal{D})=\Omega\left(e^{-\beta c}\right)$ uniform in N (Alicki-Fannes-Horodecki 2008).
- The 4D Toric Code is self-correcting: $\operatorname{gap}(\mathcal{D})=\mathcal{O}\left(e^{-c N}\right)$ for low T (Dennis, Kitev, Landahl, Preskill 2002, Alicki-Horodecki®3 2010)
- For Quantum Double models (Kitaev 1997) with G abelian $\operatorname{gap}(\mathcal{D})=\Omega\left(e^{-\beta c}\right)$ uniform in N
(Kómár, Landon-Cardinal, Temme, 2016)
- Heuristic arguments based on energy barriers (Bravyi, Terhal 2009; Landon-Cardinal, Poulin 2013)

Our result

[arxiv:2107.01628, Forum of Mathematics, Sigma 2023]
For any quantum double model with group G, we have that for any
$\beta<\infty$

$$
\operatorname{gap}(\mathcal{D}) \geq \lambda(G, \beta)>0
$$

uniformly in N.
What's interesting about our result:

1. Covers non-abelian models (required for universal quantum computation by braiding anons)
2. We use tensor networks techniques!

What's not so nice:

- Dependence on β is worse than previous results ...
- ...but we have ideas on how to improve it and obtain a similar bound.

Quantum Double Models

Quantum double model with group G

Quantum doubles

- $\Lambda=\mathbb{Z}_{N} \times \mathbb{Z}_{N}$ with orientation

Quantum double model with group G

Quantum doubles

- $\Lambda=\mathbb{Z}_{N} \times \mathbb{Z}_{N}$ with orientation
- $\ell_{2}(G)=\operatorname{span}\{|g\rangle \mid g \in G\}$

Quantum double model with group G

Quantum doubles

- $\Lambda=\mathbb{Z}_{N} \times \mathbb{Z}_{N}$ with orientation
- $\ell_{2}(G)=\operatorname{span}\{|g\rangle \mid g \in G\}$
- for each edge $e \in \mathcal{E}$

$$
\mathcal{H}_{e}=\ell_{2}(G)
$$

Quantum double model with group G

Quantum doubles

- $\Lambda=\mathbb{Z}_{N} \times \mathbb{Z}_{N}$ with orientation
- $\ell_{2}(G)=\operatorname{span}\{|g\rangle \mid g \in G\}$
- for each edge $e \in \mathcal{E}$

$$
\mathcal{H}_{e}=\ell_{2}(G)
$$

- Commuting Hamiltonian

$$
H_{\Lambda}=-\sum_{v \text { vertex }} A_{v}-\sum_{p \text { plaquette }} B_{p}
$$

where $\left[A_{v}, A_{v^{\prime}}\right]=\left[B_{p}, B_{p^{\prime}}\right]=\left[A_{v}, B_{p}\right]=0$

The interaction terms

$$
A_{v}=\frac{1}{|G|} \sum_{g \in G} R^{g} \overbrace{R^{g}}^{\boldsymbol{L}^{g}} L^{g} \quad B_{p}=\frac{1}{|G|} \sum_{g_{4}^{-1} g_{3}^{-1} g_{2} g_{1}=1}\left|g_{2}\right\rangle\left\langle g_{2}\right| \underbrace{\left|g_{1}\right\rangle\left\langle g_{1}\right|}_{\left|g_{3}\right\rangle\left\langle g_{3}\right|}\left|g_{4}\right\rangle\left\langle g_{4}\right|
$$

where

$$
\begin{array}{rlrl}
L^{g} & :=\sum_{h \in G}|g h\rangle\langle h|, & L^{g}|h\rangle & =|g h\rangle \\
R^{g}:=\sum_{h \in G}\left|h g^{-1}\right\rangle\langle h|, & R^{g}|h\rangle=\left|h g^{-1}\right\rangle
\end{array}
$$

are the left and right regular representations of G.

Some properties

1. The ground state dimension is independent of N. It is given by the number of flat G-connections or

$$
\operatorname{dim}\left(\operatorname{Hom}\left(\mathbb{Z}^{2}, G\right) / \sim G\right)
$$

Some properties

1. The ground state dimension is independent of N. It is given by the number of flat G-connections or

$$
\operatorname{dim}\left(\operatorname{Hom}\left(\mathbb{Z}^{2}, G\right) / \sim G\right)
$$

2. Elementary excitations are localized particles. They can classified by the irreps of $D(G)$ Drinfield's quantum double algebra of $\ell_{2}(G)$.

Some properties

1. The ground state dimension is independent of N. It is given by the number of flat G-connections or

$$
\operatorname{dim}\left(\operatorname{Hom}\left(\mathbb{Z}^{2}, G\right) / \sim G\right)
$$

2. Elementary excitations are localized particles. They can classified by the irreps of $D(G)$ Drinfield's quantum double algebra of $\ell_{2}(G)$.
3. They can support universal quantum computation.

If G is not abelian, braiding and exchanging elementary excitation is a non-abelian operation. This allows to encode arbitary quantum computations (topological quantum computing).

Detailed balance

GNS scalar product

$$
\langle A, B\rangle_{\beta}=\operatorname{Tr} \rho_{\beta} A^{\dagger} B, \quad \rho_{\beta}=\frac{1}{Z_{\beta}} e^{-\beta H_{\Lambda}}
$$

Detailed balance
$-\mathcal{D}$ is self-adjoint and positive semidefinite with respect to $\langle\cdot, \cdot\rangle_{\beta}$

$$
\langle\mathcal{D}(A), B\rangle_{\beta}=\langle A, \mathcal{D}(B)\rangle_{\beta}, \quad\langle\mathcal{D}(A), A\rangle_{\beta} \leq 0
$$

Detailed balance

GNS scalar product

$$
\langle A, B\rangle_{\beta}=\operatorname{Tr} \rho_{\beta} A^{\dagger} B, \quad \rho_{\beta}=\frac{1}{Z_{\beta}} e^{-\beta H_{\Lambda}}
$$

Detailed balance
$-\mathcal{D}$ is self-adjoint and positive semidefinite with respect to $\langle\cdot, \cdot\rangle_{\beta}$

$$
\langle\mathcal{D}(A), B\rangle_{\beta}=\langle A, \mathcal{D}(B)\rangle_{\beta}, \quad\langle\mathcal{D}(A), A\rangle_{\beta} \leq 0
$$

We can represent $-\mathcal{D}$ as a local Hamiltonian \tilde{H} such that

$$
\operatorname{gap}(\mathcal{D})=\operatorname{gap}(\tilde{H})
$$

Vectorization

Vectorization

We can identify $\mathcal{B}\left(\mathcal{H}_{\Lambda}\right)$ with $\mathcal{H}_{\Lambda}^{2}=\mathcal{H}_{\Lambda} \otimes \mathcal{H}_{\Lambda}$ via

$$
Q \mapsto|\iota(Q)\rangle=\left(Q \rho_{\beta}^{1 / 2} \otimes \mathbb{1}\right)|\Omega\rangle, \quad|\Omega\rangle=\sum_{\vec{g} \in G^{\Lambda}}|\vec{g}, \vec{g}\rangle
$$

It is an isometry between $\left(\mathcal{B}\left(\mathcal{H}_{\Lambda}\right),\langle\cdot, \cdot\rangle_{\beta}\right)$ and $\mathcal{H}_{\Lambda}^{2}$.

Vectorization

Vectorization
We can identify $\mathcal{B}\left(\mathcal{H}_{\Lambda}\right)$ with $\mathcal{H}_{\Lambda}^{2}=\mathcal{H}_{\Lambda} \otimes \mathcal{H}_{\Lambda}$ via

$$
Q \mapsto|\iota(Q)\rangle=\left(Q \rho_{\beta}^{1 / 2} \otimes \mathbb{1}\right)|\Omega\rangle, \quad|\Omega\rangle=\sum_{\vec{g} \in G^{\Lambda}}|\vec{g}, \vec{g}\rangle
$$

It is an isometry between $\left(\mathcal{B}\left(\mathcal{H}_{\Lambda}\right),\langle\cdot, \cdot\rangle_{\beta}\right)$ and $\mathcal{H}_{\Lambda}^{2}$.

Vectorized Lindbladian

$$
\begin{gathered}
\tilde{H}_{e}|\iota(Q)\rangle:=-\left|\iota\left(\mathcal{D}_{e}(Q)\right)\right\rangle \\
\tilde{H}=\sum_{e} \tilde{H}_{e}, \quad \tilde{H}_{e} \geq 0
\end{gathered}
$$

\tilde{H} is a local, frustration-free Hamiltonian!

Support of \widetilde{H}_{e}

Ground states

We can characterize the local ground states subspaces of \tilde{H} :

$$
\begin{aligned}
& \operatorname{ker} \sum_{e \in X} \mathcal{D}_{e}=\left\{S_{\alpha, e}(\omega) \mid e \in X\right\}^{\prime} \subset \mathbb{1}_{X} \otimes \mathcal{B}\left(\mathcal{H}_{X^{c}}\right) \\
& \operatorname{ker} \sum_{e \in X} \tilde{H}_{e} \subset\left\{\left(Q \rho_{\beta}^{1 / 2} \otimes \mathbb{1}\right)|\Omega\rangle \mid Q \in \mathcal{B}\left(\mathcal{H}_{X^{c}}\right)\right\}
\end{aligned}
$$

In particular, when $X=\Lambda$, the unique ground state of \tilde{H} is the thermofield double $\left|\rho_{\beta}^{1 / 2}\right\rangle=|\iota(1)\rangle$, which is a local purification of ρ_{β}.

Warning!

- H_{Λ} : quantum double model Hamiltonian on \mathcal{H}_{Λ}, commuting, degenerate ground states;
- \tilde{H} : non-commuting Hamiltonian on $\mathcal{H}_{\Lambda} \otimes \mathcal{H}_{\Lambda}$, unique ground state $\left|\rho_{\beta}^{1 / 2}\right\rangle, \operatorname{gap}(\tilde{H})=\operatorname{gap}(\mathcal{D})$

Tensor networks tools

1. The thermofield double state $\left|\rho_{\beta}^{1 / 2}\right\rangle$ can be represented as a PEPS (Projected Entangled Pair State)
2. PEPS have a frustration-free Hamiltonian associated to them, called the parent Hamiltonian $H^{\text {parent }}$
3. There are conditions on the PEPS that imply that $H^{\text {parent }}$ has a spectral gap.

Theorem
Let \mathcal{X} be the family of rectangles having at most $n(\beta)$ plaquettes per row and column, for $n(\beta) \sim \exp (\beta)$. Then there exists a parent Hamiltonian with unique ground state $\left|\rho_{\beta}^{1 / 2}\right\rangle$

$$
H^{\text {parent }}=\sum_{X \in X} P_{X}^{\perp}
$$

such that $\operatorname{gap}\left(H^{\text {parent }}\right) \geq \kappa>0$ uniformly in β and N.
We want to compare \tilde{H} with $H^{\text {parent! }}$

Comparison

Lemma (Step 1: intermediate projection) Let Π_{X} the projection on

$$
\left\{\left(Q \rho_{\beta}^{1 / 2} \otimes \mathbb{1}\right)|\Omega\rangle \mid Q \in \mathcal{B}\left(\mathcal{H}_{X^{c}}\right)\right\}
$$

Then

$$
\sum_{e \in X} \tilde{H}_{e} \geq \frac{C}{|X|} e^{-c \beta|X|} \Pi_{X}^{\perp}, \quad \text { and } \quad \Pi_{X}^{\perp} \geq P_{X}^{\perp}
$$

Lemma (Step 2: coarse-graining)

$$
\tilde{H}=\sum_{e \in \Lambda} \tilde{H}_{e} \geq \frac{1}{n(\beta)^{4}} \sum_{X \in X}\left(\sum_{e \in X} \tilde{H}_{e}\right) \geq C \frac{e^{-c \beta n(\beta)^{2}}}{n(\beta)^{4}} H^{\text {parent }}
$$

Conclusion

$$
\operatorname{gap}(\mathcal{D})=\operatorname{gap}(\tilde{H}) \geq C \frac{e^{-c \beta n(\beta)^{2}}}{n(\beta)^{4}} \kappa \quad \text { uniformly in } N
$$

The PEPS parent Hamiltonian

PEPS and Parent Hamiltonian

What is a PEPS? It is a family of states, defined by the contraction of tensors $V_{e} \in\left(\mathbb{C}^{D}\right)^{\otimes 4} \otimes \mathbb{C}^{d}$. D is called the virtual dimension, d the physical dimension.

For each region \mathcal{R}, contracting virtual indices in \mathcal{R} gives a linear map from boundary virtual indices to physical indices:

$$
V_{\mathcal{R}}: \mathcal{H}_{\partial \mathcal{R}} \longrightarrow \mathcal{H}_{\mathcal{R}}
$$

PEPS and Parent Hamiltonian

What is a PEPS? It is a family of states, defined by the contraction of tensors $V_{e} \in\left(\mathbb{C}^{D}\right)^{\otimes 4} \otimes \mathbb{C}^{d}$. D is called the virtual dimension, d the physical dimension.

For each region \mathcal{R}, contracting virtual indices in \mathcal{R} gives a linear map from boundary virtual indices to physical indices:

$$
V_{\mathcal{R}}: \mathcal{H}_{\partial \mathcal{R}} \longrightarrow \mathcal{H}_{\mathcal{R}}
$$

PEPS and Parent Hamiltonian

What is a PEPS? It is a family of states, defined by the contraction of tensors $V_{e} \in\left(\mathbb{C}^{D}\right)^{\otimes 4} \otimes \mathbb{C}^{d}$. D is called the virtual dimension, d the physical dimension.

For each region \mathcal{R}, contracting virtual indices in \mathcal{R} gives a linear map from boundary virtual indices to physical indices:

$$
V_{\mathcal{R}}: \mathcal{H}_{\partial \mathcal{R}} \longrightarrow \mathcal{H}_{\mathcal{R}}
$$

Parent Hamiltonian and approximate factorization

Parent Hamiltonian
A local f.f. Hamiltonian whose ground states in a region \mathcal{R} are exactly Ran $V_{\mathcal{R}}$, for a "good" class of regions \mathcal{R} (e.g. all sufficiently large rectangles).

Boundary state

The boundary state of a region \mathcal{R} is a (unormalized) density matrix on the boundary virtual indices, obtained by tracing out the physical indices.

$$
\rho_{\partial \mathcal{R}}=V_{\mathcal{R}}^{\dagger} V_{\mathcal{R}} \in \mathcal{B}\left(\mathcal{H}_{\partial \mathcal{R}}\right)
$$

Approximate factorization

Definition (Approximate factorization)
$\rho_{\partial \mathcal{R}}$ is ϵ-approximately factorizable if there exists a product state

$$
\sigma_{\partial \mathcal{R}}=\bigotimes_{u \in \partial \mathcal{R}} \sigma_{x}
$$

such that

$$
\left\|\rho_{\partial \mathcal{R}}^{1 / 2} \sigma_{\partial \mathcal{R}}^{-1} \rho_{\partial \mathcal{R}}^{1 / 2}-\mathbb{1}\right\| \leq \varepsilon
$$

Kastoryano-L.Perez-Garcia arXiv:1709.07691
For an appropriately chosen family of rectangles $\{\mathcal{R}\}$, if $\rho_{\mathcal{R}}$ is
$\epsilon(\mathcal{R})$-approximately factorizable, with $\epsilon(\mathcal{R})$ decaying exponentially in the diameter of \mathcal{R}, then the parent Hamiltonian has a positive spectral gap (independent of system size).

Approximate factorization - 1D

In 1D, the boundary state is the Choi-Jamiołkowski matrix of the transfer operator.

Approximate factorization - 1D

In 1D, the boundary state is the Choi-Jamiołkowski matrix of the transfer operator. In the tensor is injective, then \mathbb{E} is primitive: \mathbb{E}^{n} converges to a rank-one operator. This implies that

$$
\rho_{\partial \mathcal{R}} \rightarrow \sigma=\sigma_{1} \otimes \sigma_{2}
$$

exponentially fast in $|\mathcal{R}|$. It implies approximate factorization since

$$
\left\|\rho_{\partial \mathcal{R}}^{1 / 2} \sigma_{\partial \mathcal{R}}^{-1} \rho_{\partial \mathcal{R}}^{1 / 2}-\mathbb{1}\right\| \leq \sigma_{\min }^{-1}\left\|\rho_{\partial \mathcal{R}}-\sigma\right\|
$$

Locality of the boundary - quantum double

Using the explicit description of $\left|\rho_{\beta}^{1 / 2}\right\rangle$ as a PEPS, we can bound:

$$
\left\|\rho_{\partial \mathcal{R}}-\kappa_{\partial \mathcal{R}} J_{\partial \mathcal{R}}\right\|_{\infty} \leq 3|G|^{2}\left(\frac{\gamma_{\beta}}{1+\gamma_{\beta}}\right)^{|\mathcal{R}|}, \quad \gamma_{\beta}=\frac{e^{\beta}-1}{|G|}
$$

where $J_{\partial \mathcal{R}}$ is the projection on the support of $\rho_{\partial \mathcal{R}}$.
formalize. We are going to expand the expression for $\rho_{\partial \mathcal{R}}$

as a sum over maps

$$
\widehat{g}: \mathcal{E}_{\mathcal{R}} \longrightarrow G \quad, \quad \widehat{a}: \mathcal{V}_{\mathcal{R}} \longrightarrow G
$$

satisfying a certain compatibility condition. Let us explain the notation: at each

This implies approximate factorization, choosing $\sigma_{\partial \mathcal{R}}=\kappa_{\partial \mathcal{R}} J_{\partial \mathcal{R}}$

Outlook

- For all 2D quantum double models with group G

$$
\operatorname{gap}(\mathcal{D}) \geq \lambda(G, \beta)>0
$$

Outlook

- For all 2D quantum double models with group G

$$
\operatorname{gap}(\mathcal{D}) \geq \lambda(G, \beta)>0
$$

Work in progress:

- Other 2D topological models (string nets, etc.)? Replace $\ell_{2}(G)$ by a (weak)-Hopf algebra. With András Molnár (Vienna), Alberto Ruiz-de-Alarcón (Tübingen).

Outlook

- For all 2D quantum double models with group G

$$
\operatorname{gap}(\mathcal{D}) \geq \lambda(G, \beta)>0
$$

Work in progress:

- Other 2D topological models (string nets, etc.)? Replace $\ell_{2}(G)$ by a (weak)-Hopf algebra. With András Molnár (Vienna), Alberto Ruiz-de-Alarcón (Tübingen).
- Improving the dependence on β : prove a spectral gap for $\sum_{e} \Pi_{e}^{\perp}$ directly, since

$$
\sum_{e} \tilde{H}_{e} \geq C e^{-c \beta} \sum_{e} \Pi_{e}^{\perp}
$$

Outlook

- For all 2D quantum double models with group G

$$
\operatorname{gap}(\mathcal{D}) \geq \lambda(G, \beta)>0
$$

Work in progress:

- Other 2D topological models (string nets, etc.)? Replace $\ell_{2}(G)$ by a (weak)-Hopf algebra. With András Molnár (Vienna), Alberto Ruiz-de-Alarcón (Tübingen).
- Improving the dependence on β : prove a spectral gap for $\sum_{e} \Pi_{e}^{\perp}$ directly, since

$$
\sum_{e} \tilde{H}_{e} \geq C e^{-c \beta} \sum_{e} \Pi_{e}^{\perp}
$$

- the mixing time. Can we improve from a spectral gap estimate to a log-Sobolev constant estimate? \rightarrow Gibbs state is a trivial state

Outlook

- For all 2D quantum double models with group G

$$
\operatorname{gap}(\mathcal{D}) \geq \lambda(G, \beta)>0
$$

Work in progress:

- Other 2D topological models (string nets, etc.)? Replace $\ell_{2}(G)$ by a (weak)-Hopf algebra. With András Molnár (Vienna), Alberto Ruiz-de-Alarcón (Tübingen).
- Improving the dependence on β : prove a spectral gap for $\sum_{e} \Pi_{e}^{\perp}$ directly, since

$$
\sum_{e} \tilde{H}_{e} \geq C e^{-c \beta} \sum_{e} \Pi_{e}^{\perp}
$$

- the mixing time. Can we improve from a spectral gap estimate to a log-Sobolev constant estimate? \rightarrow Gibbs state is a trivial state

Thank you for your attention!

1D models

No-self correction in 1D

Self-correction is impossible in 1D even for classical systems:

1. Ising shows in 1925 that there is no phase transition for his 1D model;

No-self correction in 1D

Self-correction is impossible in 1D even for classical systems:

1. Ising shows in 1925 that there is no phase transition for his 1D model;
2. Holley, Stroock 1989: spectral gap for Glauber dynamics for 1D Ising model.

No-self correction in 1D

Self-correction is impossible in 1D even for classical systems:

1. Ising shows in 1925 that there is no phase transition for his 1D model;
2. Holley, Stroock 1989: spectral gap for Glauber dynamics for 1D Ising model.
3. They actually show a stronger property: log-Sobolev inequality. Mixing time is logarithmic in N !

No-self correction in 1D

Self-correction is impossible in 1D even for classical systems:

1. Ising shows in 1925 that there is no phase transition for his 1D model;
2. Holley, Stroock 1989: spectral gap for Glauber dynamics for 1D Ising model.
3. They actually show a stronger property: log-Sobolev inequality. Mixing time is logarithmic in N !

Similarly, for quantum systems:

1. Alicki, Fannes, Horodecki 2009: spectral gap quantum ferromagnetic 1D Ising model

No-self correction in 1D

Self-correction is impossible in 1D even for classical systems:

1. Ising shows in 1925 that there is no phase transition for his 1D model;
2. Holley, Stroock 1989: spectral gap for Glauber dynamics for 1D Ising model.
3. They actually show a stronger property: log-Sobolev inequality. Mixing time is logarithmic in N !

Similarly, for quantum systems:

1. Alicki, Fannes, Horodecki 2009: spectral gap quantum ferromagnetic 1D Ising model
2. Kastoryano, Brandao 2016: spectral gap for 1D commuting quantum spin chains

log-Sobolev inequality for 1D models

Bardet, Capel, Gao, L. Pérez-García, Rouzé 2023
For a commuting 1D spin chain Hamiltonian, the associated ergodic Davies generator at any inverse temperature $\beta<\infty$ satisfies a log-Sobolev inequality with constant

$$
\alpha(\mathcal{D}) \geq C \log ^{-1}(N)
$$

which implies that the mixing time is logarithmic in N.
This is a culmination of a long line of work:

1. Bardet, Capel, Gao, L., Pérez-García, Rouzé. arXiv:2112.00601
2. Bardet, Capel, Gao, L., Pérez-García, Rouzé. Phys. Rev. Lett. 130 (2023)
3. Bardet, Capel, L., Pérez-García, Rouzé. J. of Math. Phys. 62 (2021)
4. Capel, L., Pérez-García. J. of Phys. A 51.48 (2018)
5. Capel, L., Pérez-García. IEEE Trans. Inf. Th. 64.7 (2017)

SPT phases

Symmetries

If the system has a symmetry G, with unitary representation u_{g} such that

$$
\left[H_{\mathrm{sys}}, u_{g}\right]=0 \quad \forall g \in G
$$

then we could require the existence of a representation U_{g} on the environment such that

$$
\left[H(\lambda), u_{g} \otimes U_{g}\right]=0 \quad \forall g \in G
$$

In this case, \mathcal{L} satisfies a covariance condition:

Weak symmetry

$$
\mathcal{L}\left(u_{g} \rho u_{g}^{\dagger}\right)=u_{g} \mathcal{L}(\rho) u_{g}^{\dagger}
$$

Symmetries

$$
\left[H(\lambda), u_{g} \otimes U_{g}\right]=0 \quad \forall g \in G
$$

A stronger requirement is that $U_{g}=\mathbb{1}$ (trivial representation), in which case

Strong symmetry

$$
\operatorname{Tr}\left[u_{g} \mathcal{L}(\rho)\right]=0, \quad \text { or equivalently that }\left\langle u_{g}\right\rangle_{\rho_{\text {eff }(t)}} \text { constant } \forall g \in G
$$

A sufficient (and necessary, if \mathcal{L} has a full rank invariant state) is that

$$
\left[S^{\alpha}, u_{g}\right]=0 \quad \forall \alpha, \forall g \in G
$$

Strong symmetry vs. ergodicity

If \mathcal{L} is strongly symmetric, then it cannot be ergodic!

$$
\left\{S_{\alpha}\right\}_{\alpha}^{\prime} \supseteq\left\{u_{g} \mid g \in G\right\}
$$

If u_{g} is not irreducible, each irrep-sector is invariant, and

$$
\rho_{\beta}=\sum_{\gamma} \rho_{\beta}^{(\gamma)}, \quad \mathcal{L}\left(\rho_{\beta}^{(\text {gamma })}\right)
$$

Open problem:
Obtain mixing-time bounds for non-ergodic Davies generators.

