

bulk-to-boundary anyon fusion

from microscopic models

Andreas Bauer and Jens Eisert

Julio C. Magdalena de la Fuente, TOPO 2023, Tübingen

2+1d topological theories with defects

"2-manifolds to state(space)"

"3-bordisms to linear maps"

2+1d topological theories with defects

macroscopic theory

"2-manifolds to state(space)"

"3-bordisms to linear maps"
can be extended with defects

2+1d topological theories with defects

macroscopic theory

"2-manifolds to state(space)"

"3-bordisms to linear maps"
can be extended with defects

2+1d topological theories with boundaries

boundary: 1+1d interface to trivial theory

2+1d topological theories with boundaries

boundary: 1+1d interface to trivial theory
anyons close to the boundary can...

...condense

2+1d topological theories with boundaries

boundary: 1+1d interface to trivial theory
anyons close to the boundary can...

..condense

...confine

2+1d topological theories with boundaries

boundary: 1+1d interface to trivial theory
anyons close to the boundary can...

..condense

...confine

...become identified

folding trick: domain walls as boundaries

domain wall: 1+1d interface between two (non-trivial) theories

folding trick: domain walls as boundaries

domain wall: 1+1d interface between two (non-trivial) theories

folding trick: domain walls as boundaries

domain wall: 1+1d interface between two (non-trivial) theories
"folded theory"

folding trick: domain walls as boundaries

domain wall: 1+1d interface between two (non-trivial) theories

defined by behaviour of anyons close to domain wall

this work: bulk-to-boundary anyon fusion in non-chiral 2+1D theories

fusion vertex: point (in spacetime) where bulk anyon i gets mapped to boundary anyon j

this work: bulk-to-boundary anyon fusion in non-chiral 2+1D theories

fusion vertex: point (in spacetime) where bulk anyon i gets mapped to boundary anyon j

Carqueville, Runkel, Schaumann 1710.10214
Bridgeman Barter Jones 1806.01279, 1810.09469 and
Bridgeman Barter 1901.08069, 1907.06692

(further) contents

- microscopic fixed-point models with boundaries
- bulk and boundary anyons
- bulk-to-boundary fusion vertex
- calculating fusion multiplicities
- applications
- conclusion and outlook

fixed-point models

idea

define theory in terms of microscopic model with exact topological invariance

fixed-point models

idea

define theory in terms of microscopic model with exact topological invariance

defects implemented by modifying model along submanifold

fixed-point models

bulk

2D "string-net" models defined on branched triangulation

fixed-point models

bulk

2D "string-net" models defined on branched triangulation
states embedded into finite-dim. tensor product space

$$
\mathscr{H}=\bigotimes_{\text {edges }}^{e} \text { } \operatorname{span}_{\mathbb{C}}\{1, i, j, k, \ldots\}
$$

with local constraints @ each triangle

$$
i \times j=\bigoplus_{k} N_{i j}^{k} k, \quad N_{i j}^{k} \in \mathbb{Z}^{+}
$$

fixed-point models

bulk

2D "string-net" models defined on branched triangulation
states embedded into finite-dim. tensor product space

$$
\mathscr{H}=\bigotimes_{\text {edges }}^{e} \text { } \operatorname{span}_{\mathbb{C}}\{1, i, j, k, \ldots\}
$$

with local constraints @ each triangle

$$
i \times j=\bigoplus_{k} N_{i j}^{k} k, \quad N_{i j}^{k} \in \mathbb{Z}^{+}
$$

fixed-point models

bulk

2D "string-net" models defined on branched triangulation
states embedded into finite-dim. tensor product space

$$
\mathscr{H}=\bigotimes_{\text {edges }}^{e} \text { } \operatorname{span}_{\mathbb{C}}\{1, i, j, k, \ldots\}
$$

with local constraints @ each triangle

$$
i \times j=\bigoplus_{k} N_{i j}^{k} k, \quad N_{i j}^{k} \in \mathbb{Z}^{+}
$$

fixed-point models

bulk

Example 1

finite group $G=\{1, g, h, k, \ldots\}$ defines

$$
g \times h=g h \quad \Longrightarrow \quad N_{g, h}^{k}=\delta_{k, g h}
$$

riangulation
ce

e.g. $G=\mathbb{Z}_{2}=\{0,1\}$:

$$
0_{0}^{0} 0_{0}^{0} 0_{0}^{0} 0_{0}^{0} 0_{0}^{0}
$$

fixed-point models

 bulk
Example 1

finite group $G=\{1, g, h, k, \ldots\}$ defines

$$
g \times h=g h \quad \Longrightarrow \quad N_{g, h}^{k}=\delta_{k, g h}
$$

e.g. $G=\mathbb{Z}_{2}=\{0,1\}$:

Example 2

beyond group: $\{1, \tau\}$ with

$$
\tau \times \tau=1+\tau
$$

fixed-point models

bulk

topological invariance by identifying states on equivalent triangulations
related by Pachner moves

fixed-point models

bulk

topological invariance by identifying states on equivalent triangulations
related by Pachner moves

$\stackrel{1-3}{\leftarrow}$

fixed-point models

 bulktopological invariance by identifying states on equivalent triangulations
"F-symbol/tensor"
related by Pachner moves

building block of 3d triangulation
equivalent to assignment

fixed-point models

bulk

sequence of Pachner moves is not unique

fixed-point models

bulk

sequence of Pachner moves is not unique

F-symbols obey consistency condition

$$
F_{f d c}^{e b a} F_{f g d}^{h a i}=\sum_{k} F_{c g d}^{h e k} F_{f g c}^{k b i} F_{i h k}^{e b a}
$$

+ similar constraints for other branching structures

fixed-point models
 bulk

sequence of Pachner moves is not unique
F-symbols obey consistency condition

consistent data $\left\{\{1, i, j, \ldots\},\left\{N_{i j}^{k}\right\},\left\{F_{i j k}^{l m n}\right\}\right\}$
defines spherical fusion category

$$
F_{f d c}^{e b a} F_{f g d}^{h a i}=\sum_{k} F_{c g d}^{h e k} F_{f g c}^{k b i} F_{i h k}^{e b a}
$$

+ similar constraints for other branching structures

fixed-point models

bulk

consistent data $\left\{\{1, i, j, \ldots\},\left\{N_{i j}^{k}\right\},\left\{F_{i j k}^{l m n}\right\}\right\}$
defines spherical fusion category

$$
F_{f d c}^{e b a} F_{f g d}^{h a i}=\sum_{k} F_{c g d}^{h e k} F_{f g c}^{k b i} F_{i h k}^{e b a}
$$

+ similar constraints for other branching structures

anyons in the bulk

tube algebra

anyons in the bulk

tube algebra

bulk line defect described by $S^{1} \times[0,1]=: T$

anyons in the bulk

 tube algebra
microscopic model:

bulk line defect described by $S^{1} \times[0,1]=: T$

anyons in the bulk

tube algebra

bulk line defect described by $S^{1} \times[0,1]=: T$
microscopic model:

V_{T} is not only a vector space...

...but also an algebra

anyons in the bulk

tube algebra

multiplication $*$ on V_{T} defined by linear map associated to

anyons in the bulk

tube algebra

anyons in the bulk

tube algebra

as an algebra, $V_{T}=\bigoplus T_{i}$ with T_{i} irreducible subspaces

anyons in the bulk

 tube algebra
$V_{T}=\bigoplus_{i} T_{i}$ with T_{i} irreducible subspaces

anyons in the bulk

tube algebra

$V_{T}=\bigoplus_{i} T_{i}$ with T_{i} irreducible subspaces

$\left\{T_{i}\right.$ irreducible $\} \stackrel{1-1}{\longleftrightarrow}\left\{c_{i} \in Z\left(V_{T}\right): c_{i} * c_{j}=\delta_{i, j} c_{i}\right.$ indecomposable $\}$ indecomposable central idempotents

c_{i} can be viewed as projector onto T_{i}

anyons in the bulk

tube algebra

Example 1

$\operatorname{Vec}^{\omega}(G)$ finite group G and (normalized) 3-cocycle ω

$$
\left(g^{\prime}, h^{\prime}\right)_{T} *(g, h)_{T}=\delta_{g^{\prime}, h g h^{-1}} \beta_{g}\left(h^{\prime}, h\right)\left(g, h^{\prime} h\right)_{T}
$$

with $\beta_{g}\left(h^{\prime}, h\right)=\omega\left(h^{\prime} h g\left(h^{\prime} h\right)^{-1}, h^{\prime}, h\right) \omega\left(h^{\prime}, h, g\right) \overline{\omega\left(h^{\prime}, h g h^{-1}, h\right)}$
irreps 1-1 with $\left(c, \rho_{c}\right)$ and associated central idempotents are

$$
c_{\left(c, \rho_{c}\right)}^{T}=\frac{\operatorname{dim}\left(\rho_{c}\right)}{|Z(c)|} \sum_{g \in c} \sum_{h \in Z(g)} \overline{\tilde{\chi}_{\rho_{c}}^{g}(h)}(g, h)_{T}
$$

conjugacy class: c
β_{g}-projective Irrep of centralizer $Z(c): \rho_{c}$

fixed-point models
 boundary

modify triangulation@ boundary: additional degrees of freedom on boundary vertices
states embedded into finite-dim. tensor product space

$$
\mathscr{H}=\bigotimes_{\text {edges }} \operatorname{span}\{1, i, j, k, \ldots\} \bigotimes_{\text {bdr'y vertices }} \operatorname{span}\{\alpha, \beta, \ldots\}
$$

fixed-point models
 boundary

modify triangulation@ boundary: additional degrees of freedom on boundary vertices
states embedded into finite-dim. tensor product space

$$
\mathscr{H}=\bigotimes_{\text {edges }} \operatorname{span}\{1, i, j, k, \ldots\} \bigotimes_{\text {bdr'y vertices }} \operatorname{span}\{\alpha, \beta, \ldots\}
$$

with additional local constraints @ each boundary edge

consistent with bulk $N_{i j}^{k}$

$$
i \triangleright(j \triangleright \alpha) \simeq(i \times j) \triangleright \alpha, \quad \forall i, j, \alpha
$$

fixed-point models

boundary

modify triangulation@ boundary: additional degrees of freedom on boundary vertices

Example 3 standard boundary

the simples of any bulk model $\{1, i, j, k, \ldots\}$ with

$$
i \triangleright j=i \times j \quad \forall i, j
$$

define a consistent boundary model

$$
i \triangleright \alpha=\bigoplus_{\beta} M_{i, \alpha}^{\beta} \beta, \quad M_{i, \alpha}^{\beta} \in \mathbb{Z}^{+}
$$

consistent with bulk $N_{i j}^{k}$

$$
i \triangleright(j \triangleright \alpha) \simeq(i \times j) \triangleright \alpha, \quad \forall i, j, \alpha
$$

fixed-point models

boundary

topological invariance by adding moves at boundary

fixed-point models boundary
topological invariance by adding moves at boundary

induce linear maps, represented by

fixed-point models boundary
topological invariance by adding moves at boundary

equivalent sequences of moves

$$
L_{\alpha e a}^{\delta \beta d} L_{\beta c b}^{\delta \gamma e}=\sum_{f} L_{\alpha b a}^{\gamma \beta f} L_{\alpha c f}^{\delta \gamma d} F_{d c e}^{b a f}
$$

induce linear maps, represented by

fixed-point models

boundary

topological invariance by adding moves at boundary

induce linear maps, represented by

\leadsto

equivalent sequences of moves constraints on $\left\{\{\alpha, \beta, \ldots\},\left\{M_{i \alpha}^{\beta}\right\},\left\{L_{\alpha i j}^{\beta \gamma k}\right\}\right\}$ for

$$
L_{\alpha e a}^{\delta \beta d} L_{\beta c b}^{\delta \gamma e}=\sum_{f} L_{\alpha b a}^{\gamma \beta f} L_{\alpha c f}^{\delta \gamma d} F_{d c e}^{b a f}
$$ bulk \mathscr{C} defines \mathscr{C}-module category ${ }_{\mathscr{A}} \mathscr{M}$

anyons at the boundary

semi-tube algebra

anyons at the boundary

semi-tube algebra

boundary line defect described by $[0,1] \times[0,1]=: S$

anyons at the boundary

semi-tube algebra

microscopic model:

boundary line defect described by $[0,1] \times[0,1]=: S$

anyons at the boundary

semi-tube algebra

microscopic model:

V_{S} is not only a vector space...

boundary line defect described by $[0,1] \times[0,1]=: S$
...but also an algebra

anyons at the boundary

semi-tube algebra

multiplication * on V_{S} defined by linear map associated to

anyons at the boundary

semi-tube algebra

multiplication * on V_{S} defined by linear map associated to

$\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}, a^{\prime}\right)_{S}^{*}(\alpha, \beta, \gamma, \delta, a)_{S}=\delta_{\alpha^{\prime}, \delta} \delta_{\beta^{\prime}, \gamma} \sum_{b} L_{\beta a a^{\prime}}^{\gamma^{\prime} \beta^{\prime}} \overline{L_{\alpha a a^{\prime}}^{\delta^{\prime} \alpha^{\prime} b}}\left(\alpha, \beta, \delta^{\prime}, \gamma^{\prime}, b\right)_{S}$
as an algebra, $V_{S}=\bigoplus_{j} S_{j}$ with S_{j} irreducible subspaces
associated to central idempotents

anyons at the boundary

semi-tube algebra

Example 1'

for bulk $\operatorname{Vec}(G)$, a subgroup H together with a 2-cocycle $\psi: H^{2} \rightarrow U(1)$ fulfilling

$$
\psi(a, b) \psi(a b, c)=\psi(a, b c) \psi(b, c) \quad \alpha, \beta \in G / H
$$

define valid boundary. Associated central idempotents of $S=\operatorname{span}_{\mathbb{C}}\left\{(\alpha, \beta, g)_{S}\right\}$ are

$$
c_{\substack{\left(x, \kappa_{x}\right)}}^{S}=\frac{\operatorname{dim}\left(\kappa_{x}\right)}{\left|K_{x}\right|} \sum_{\substack{\alpha, \beta \in G / H \\ \alpha^{-1} \beta=x}} \sum_{g \in \operatorname{Stab}_{G}((\alpha, \beta))} \overline{\tilde{\chi}_{\kappa_{x}}^{(\alpha, \beta)}(g)}(\alpha, \beta, g)_{S}
$$

double coset: x
projective Irrep of stabilizer group $\operatorname{Stab}(x): \kappa_{c}$

bulk-to-boundary fusion vertex

$i: \operatorname{Irrep} T_{i} \subseteq V_{T}$
$j: \operatorname{Irrep} S_{j} \subseteq V_{S}$
$m_{i, j}:$ multiplicity of $T_{i} \otimes S_{j} \subseteq V_{C}$

bulk-to-boundary fusion vertex

$i: \operatorname{Irrep} T_{i} \subseteq V_{T}$
$j: \operatorname{Irrep} S_{j} \subseteq V_{S}$
$m_{i, j}:$ multiplicity of $T_{i} \otimes S_{j} \subseteq V_{C}$

bulk-to-boundary fusion vertex

$i: \operatorname{Irrep} T_{i} \subseteq V_{T}$
$j: \operatorname{Irrep} S_{j} \subseteq V_{S}$
$m_{i, j}:$ multiplicity of $T_{i} \otimes S_{j} \subseteq V_{C}$
fusion vertex is described by

bulk-to-boundary fusion vertex

$i: \operatorname{Irrep} T_{i} \subseteq V_{T}$
$j: \operatorname{Irrep} S_{j} \subseteq V_{S}$

bulk-to-boundary fusion vertex

$i: \operatorname{Irrep} T_{i} \subseteq V_{T}$
$j: \operatorname{Irrep} S_{j} \subseteq V_{S}$
$m_{i, j}:$ multiplicity of $T_{i} \otimes S_{j} \subseteq V_{C}$
fusion vertex is described by

We get space

with $V_{T} \triangleright$ and $\triangleleft V_{S}$ action,

bulk-to-boundary fusion multiplicities

actions \triangleright and \triangleleft commute

$$
V_{C}=\bigoplus_{i, j} m_{i, j} T_{i} \otimes S_{j}
$$

bulk-to-boundary fusion multiplicities

actions \triangleright and \triangleleft commute

$$
V_{C}=\bigoplus_{i, j} m_{i, j} T_{i} \otimes S_{j}
$$

"bi-representation" of algebras V_{T} and V_{S}
using central idempotents, we can project onto $m_{i, j} T_{i} \otimes S_{j}$

$$
m_{i, j}=\frac{1}{\operatorname{dim}\left(T_{i}\right) \operatorname{dim}\left(S_{j}\right)} \operatorname{Tr}\left(c_{i}^{T} \triangleright \bullet \triangleleft c_{j}^{S}\right)
$$

bulk-to-boundary fusion multiplicities

actions \triangleright and \triangleleft commute

$$
V_{C}=\bigoplus_{i, j} m_{i, j} T_{i} \otimes S_{j}
$$

$$
\text { "bi-representation" of algebras } V_{T} \text { and } V_{S}
$$

using central idempotents, we can project onto $m_{i, j} T_{i} \otimes S_{j}$

$$
m_{i, j}=\frac{1}{\operatorname{dim}\left(T_{i}\right) \operatorname{dim}\left(S_{j}\right)} \operatorname{Tr}\left(c_{i}^{T} \triangleright \bullet \triangleleft c_{j}^{S}\right)
$$

Example 1: $\operatorname{Vec}^{\omega}(G)$ with valid subgroup H and 2-cocycle ψ

$$
m_{\left(c, \rho_{c}\right)\left(x, x_{x}\right)}=\frac{1}{|G|} \sum_{\substack{g \in c \\ \alpha_{\alpha}=\mathcal{L}^{-1} g^{-1} \alpha=x}} \sum_{h \in Z(g) \cap S t a b_{G}((g \triangleright \alpha, \alpha))} \psi^{\alpha}(h, g) \overline{\psi^{\alpha}(g, h) \tilde{\chi}_{\rho_{c}}^{g}}(h) \overline{\tilde{\chi}_{\kappa_{x}}^{(g \triangleright \alpha, \alpha)}(h)}
$$

applications

TQFTs and topological quantum error correction

- explicit construction of one more invariant for TQFTs with microscopic models
- restriction on trivial boundary anyon gives Lagrangian algebra object
- algebra morphism calculated together with bulk anyon fusion vertex
- describing and designing QEC protocols based on topological codes with defects
- code dimension
- logical algebra
- folding trick: interfaces between codes
- ...

applications

TQFTs and topological quantum error correction

- explicit construction of one more invariant for TQFTs with microscopic models
- restriction on trivial boundary anyon gives Lagrangian algebra object
- algebra morphism calculated together with bulk anyon fusion vertex
- describing and designing QEC protocols based on topological codes with defects
- code dimension
- logical algebra
- folding trick: interfaces between codes

conclusion and outlook

* microscopic models for non-chiral topological theories with boundaries
* description of anyons in terms of tube algebra
* construction of bi-representation describing bulk-boundary fusion vertex
* explicit formula for $\operatorname{Vec}^{\omega}(G)$ models for bulk-boundary fusion multiplicities
- describe existing protocol(s) involving twisted gauge theory models (ongoing)
- include algebra morphism for condensable object (ongoing)
- resolving similar fusion vertex of line to line-on-surface defect in 3+1d
- understand more general defects in 3+1d with microscopic model

Thank you！

Questions？

