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boundary: 1+1d interface to trivial theory
“no non-trivial anyons”

anyons close to the boundary can…

…condense …confine …become identified
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folding trick: domain walls as boundaries

4

domain wall: 1+1d interface between two (non-trivial) theories

anyon model A ⇌ anyon model B ≃ anyon model A ⊠ B ⇌ trivial

“folded theory”

Kitaev Kong 1104.5047

defined by behaviour of anyons close to domain wall

≃



this work: bulk-to-boundary anyon fusion
in non-chiral 2+1D theories
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fusion vertex: point (in spacetime) where bulk anyon  gets mapped to boundary anyon i j
(and vice versa…)

i ↦ ⨁
j

mi,j j j ↦ ⨁
i

mi,j iand

related to:

Carqueville, Runkel, Schaumann 1710.10214

Bridgeman Barter Jones 1806.01279, 1810.09469 and

Bridgeman Barter 1901.08069, 1907.06692
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fusion vertex: point (in spacetime) where bulk anyon  gets mapped to boundary anyon i j
(and vice versa…)

i ↦ ⨁
j

mi,j j j ↦ ⨁
i

mi,j iand

related to:

Carqueville, Runkel, Schaumann 1710.10214

Bridgeman Barter Jones 1806.01279, 1810.09469 and

Bridgeman Barter 1901.08069, 1907.06692

1. framework to calculate  
2. closed formula for twisted finite gauge theory models

mi,j ∈ ℤ≥0

defines “tunneling”

mi,j ∈ ℤ≥0



(further) contents

• microscopic fixed-point models with boundaries


• bulk and boundary anyons


• bulk-to-boundary fusion vertex


• calculating fusion multiplicities


• applications 

• conclusion and outlook
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define theory in terms of microscopic model with exact topological invariance

defects implemented by modifying model along submanifold

2D 2+1d
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2D “string-net” models defined on branched triangulationExample 1 

finite group  defines 

 

 
e.g. : 

G = {1,g, h, k, . . . }

g × h = gh ⟹ Nk
g,h = δk,gh

G = ℤ2 = {0,1}

Example 2 

beyond group:  with 

 

{1,τ}

τ × τ = 1 + τ
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10

topological invariance by identifying states on equivalent triangulations

related by Pachner moves induce linear maps on associated spaces

e.g.

“F-symbol/tensor”

2-2

1-3
equivalent to assignment

building block of 3d 
triangulation
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F-symbols obey consistency conditionsequence of Pachner moves is not unique! !

Feba
fdc Fhai

fgd = ∑
k

Fhek
cgdFkbi

fgcFeba
ihk

+ similar constraints for other branching structures

Example 1 

finite group  

together with 3-cocycle  fulfilling 

 

defines spherical fusion category Vec

G = {1,i, j, k, . . . }

ω : G3 → ℂ×

ω(ab, c, d)ω(a, b, cd) = ω(b, c, d)ω(a, bc, d)ω(a, b, c)

ω(G)

consistent data  

defines spherical fusion category
{{1,i, j, . . . }, {Nk

ij}, {Flmn
ijk }}
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 with  irreducible subspacesVT = ⨁
i

Ti Ti

≃ FFF

{Ti irreducible} ⟷ {ci ∈ Z(VT) : ci * cj = δi,j ci indecomposable}1-1

center of 
V
Z(V) = {a ∈ V : a * v = v * a ∀v ∈ V}

indecomposable central idempotents

 can be viewed as projector onto ci Ti

decomposable: 
∃ central idempotents a, b : c = a + b

Example 1 

Vec  finite group  and (normalized) 3-cocycle  

 

with  

irreps 1-1 with  and associated central idempotents are 

ω(G) G ω

(g′ , h′ )T * (g, h)T = δg′ ,hgh−1βg(h′ , h)(g, h′ h)T

βg(h′ , h) = ω(h′ hg(h′ h)−1, h′ , h) ω(h′ , h, g) ω(h′ , hgh−1, h)

(c, ρc)

cT
(c,ρc) =

dim(ρc)
|Z(c) | ∑

g∈c
∑

h∈Z(g)

χ̃g
ρc

(h)(g, h)T

conjugacy class: 

-projective Irrep of centralizer : 

c
βg Z(c) ρc
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modify triangulation@ boundary: additional degrees of freedom on boundary vertices

ℋ = ⨂
edges

span{1,i, j, k, . . . } ⨂
bdr'y vertices 

span{α, β, . . . }

states embedded into finite-dim. tensor product space

with additional local constraints @ each boundary edge

i ▹ α = ⨁
β

Mβ
i,α β, Mβ

i,α ∈ ℤ+

consistent with bulk Nk
ij i ▹ ( j ▹ α) ≃ (i × j) ▹ α, ∀i, j, α

Example 3 standard boundary 

the simples of any bulk model  with 

 

define a consistent boundary model

{1,i, j, k, . . . }

i ▹ j = i × j ∀i, j
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topological invariance by adding moves at boundary

constraints on  for 

bulk  defines -module category 
{{α, β, . . . }, {Mβ

iα}, {Lβγk
αij }}

𝒞 𝒞 𝒜ℳ

induce linear maps, represented by

equivalent sequences of moves! !
Lδβd

αea Lδγe
βcb = ∑

f

Lγβf
αbaLδγd

αcf Fbaf
dce

+ similar constraints for other branching structures



anyons at the boundary
semi-tube algebra

19



anyons at the boundary
semi-tube algebra

19

boundary line defect described by  [0,1] × [0,1] =: S



anyons at the boundary
semi-tube algebra

19

boundary line defect described by  [0,1] × [0,1] =: S

microscopic model: ↦ VS ≃ ℂDS

VS = spanℂ



anyons at the boundary
semi-tube algebra

19

boundary line defect described by  [0,1] × [0,1] =: S

microscopic model: ↦ VS ≃ ℂDS

VS = spanℂ

 is not only a vector space…VS

…but also an algebra

≃



anyons at the boundary
semi-tube algebra

20

multiplication  on  defined by linear map associated to  * VS

S#S S



anyons at the boundary
semi-tube algebra

20

multiplication  on  defined by linear map associated to  * VS

(α′ , β′ , γ′ , δ′ , a′ )S * (α, β, γ, δ, a)S = δα′ ,δδβ′ ,γ ∑
b

Lγ′ β′ b
βaa′ 

Lδ′ α′ b
αaa′ 

(α, β, δ′ , γ′ , b)S

as an algebra,  with  irreducible subspaces


associated to central idempotents

VS = ⨁
j

Sj Sj

S#S S
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multiplication  on  defined by linear map associated to  * VS

(α′ , β′ , γ′ , δ′ , a′ )S * (α, β, γ, δ, a)S = δα′ ,δδβ′ ,γ ∑
b

Lγ′ β′ b
βaa′ 

Lδ′ α′ b
αaa′ 

(α, β, δ′ , γ′ , b)S

as an algebra,  with  irreducible subspaces


associated to central idempotents

VS = ⨁
j

Sj Sj

S#S S

Example 1’ 

for bulk Vec , a subgroup  together with a 2-cocycle  fulfilling 

 

define valid boundary. Associated central idempotents of  are 

(G) H ψ : H2 → U(1)

ψ(a, b)ψ(ab, c) = ψ(a, bc)ψ(b, c)

S = spanℂ{(α, β, g)S}

cS
(x,κx)

=
dim(κx)

|Kx | ∑
α,β∈G/H

∑
g∈StabG((α,β))

χ̃(α,β)
κx

(g)(α, β, g)S

double coset: 

projective Irrep of stabilizer group Stab : 

x
(x) κc

α, β ∈ G/H

α−1β = x
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bulk-to-boundary fusion vertex

21

fusion vertex is described by 

◃ :=

We get space

VC = spanℂ

with  and  action, VT ▹ ◃ VS

▹ := Irrep 

 Irrep 


 multiplicity of 

i : Ti ⊆ VT
j : Sj ⊆ VS

mi,j : Ti ⊗ Sj ⊆ VC
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actions  and  commute ▹ ◃

VC = ⨁
i,j

mi,jTi ⊗ Sj
“bi-representation” of algebras  and VT VS

using central idempotents, we can project onto  mi,jTi ⊗ Sj

mi,j =
1

dim(Ti)dim(Sj)
Tr (cT

i ▹ ∙ ◃ cS
j )

Example 1: Vec  with valid subgroup  and 2-cocycle  ω(G) H ψ

m(c,ρc),(x,κx) =
1

|G | ∑
g∈c

∑
α∈G/H

∑
h∈Z(g)∩StabG((g▹α,α))

ψα(h, g)ψα(g, h)χ̃g
ρc

(h)χ̃(g▹α,α)
κx

(h)

α−1g−1α = x
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• explicit construction of one more invariant for TQFTs with microscopic models


• restriction on trivial boundary anyon gives Lagrangian algebra object 

• algebra morphism calculated together with bulk anyon fusion vertex


• describing and designing QEC protocols based on topological codes with defects 

• code dimension


• logical algebra


• folding trick: interfaces between codes
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• explicit construction of one more invariant for TQFTs with microscopic models


• restriction on trivial boundary anyon gives Lagrangian algebra object 

• algebra morphism calculated together with bulk anyon fusion vertex


• describing and designing QEC protocols based on topological codes with defects 

• code dimension


• logical algebra


• folding trick: interfaces between codes


• …
more ideas?



conclusion and outlook
microscopic models for non-chiral topological theories with boundaries

description of anyons in terms of tube algebra

construction of bi-representation describing bulk-boundary fusion vertex


explicit formula for Vec  models for bulk-boundary fusion multiplicities 

describe existing protocol(s) involving twisted gauge theory models (ongoing) 
include algebra morphism for condensable object (ongoing)

resolving similar fusion vertex of line to line-on-surface defect in 3+1d

understand more general defects in 3+1d with microscopic model

ω(G)

24



Questions?
Thank you!
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