

bulk-to-boundary anyon fusion

from microscopic models

joint work with Andreas Bauer and Jens Eisert

Julio C. Magdalena de la Fuente, TOPO 2023, Tübingen

arXiv:2302.01835

2+1d topological theories with defects

2+1d topological theories with defects

domain walls

twist defects

2+1d topological theories with defects

twist defects

boundary: 1+1d interface to trivial theory

"no non-trivial anyons"

...

boundary: 1+1d interface to trivial theory

anyons close to the boundary can...

...condense

"no non-trivial anyons"

...

boundary: 1+1d interface to trivial theory

anyons close to the boundary can...

"no non-trivial anyons"

...confine

...

boundary: 1+1d interface to trivial theory

anyons close to the boundary can...

"no non-trivial anyons"

...

...become identified

...confine

domain wall: 1+1d interface between two (non-trivial) theories

Kitaev Kong 1104.5047

domain wall: 1+1d interface between two (non-trivial) theories

$$\left\{ \begin{array}{c} \mathbf{anyon \ model } A \boxtimes \overline{B} \end{array} \rightleftharpoons \begin{array}{c} \mathbf{trivial} \end{array} \right\}$$

domain wall: 1+1d interface between two (non-trivial) theories

anyon model
$$A$$
 \rightleftharpoons anyon model B

defined by behaviour of anyons close to domain wall

Kitaev Kong 1104.5047

ĺ

this work: bulk-to-boundary anyon fusion in non-chiral 2+1D theories

fusion vertex: point (in spacetime) where **bulk anyon** i **gets mapped to boundary anyon** j(and vice versa...)

defines "tunneling" $i \mapsto \bigoplus_{j} m_{i,j} j$ and $j \mapsto \bigoplus_{i} m_{i,j} i$ $m_{i,i} \in \mathbb{Z}_{>0}$

this work: bulk-to-boundary anyon fusion in non-chiral 2+1D theories

fusion vertex: point (in spacetime) where **bulk anyon** i **gets mapped to boundary anyon** j(and vice versa...)

(further) contents

- microscopic fixed-point models with boundaries
- bulk and boundary anyons
- bulk-to-boundary fusion vertex
- calculating fusion multiplicities
- applications
- conclusion and outlook

fixed-point models idea

define theory in terms of microscopic model with exact topological invariance

fixed-point models idea

define theory in terms of microscopic model with exact topological invariance

defects implemented by modifying model along submanifold

2D "string-net" models defined on branched triangulation

2D "string-net" models defined on branched triangulation

states embedded into finite-dim. tensor product space

$$\mathscr{H} = \bigotimes_{\substack{\mathbb{C} \\ \text{edges } e}} \operatorname{span}_{\mathbb{C}} \{1, i, j, k, \dots \}$$

with local constraints @ each triangle

$$i \times j = \bigoplus_{k} N_{ij}^{k} k, \quad N_{ij}^{k} \in \mathbb{Z}^{+}$$

2D "string-net" models defined on branched triangulation

states embedded into finite-dim. tensor product space

$$\mathscr{H} = \bigotimes_{\substack{\mathbb{C} \\ \text{edges } e}} \operatorname{span}_{\mathbb{C}} \{1, i, j, k, \dots \}$$

with local constraints @ each triangle

$$i \times j = \bigoplus_{k} N_{ij}^{k} k, \quad N_{ij}^{k} \in \mathbb{Z}^{+}$$

 λV^k $= I \mathbf{v}_{ij}$

2D "string-net" models defined on branched triangulation

states embedded into finite-dim. tensor product space

$$\mathscr{H} = \bigotimes_{\substack{\mathbb{C} \\ \text{edges } e}} \operatorname{span}_{\mathbb{C}} \{1, i, j, k, \dots \}$$

with local constraints @ each triangle

$$i \times j = \bigoplus_{k} N_{ij}^{k} k, \quad N_{ij}^{k} \in \mathbb{Z}^{+}$$

 $\hat{=} N_{ij}^k$

riangulation ce $\hat{=} N_{ij}^k$

topological invariance by identifying states on equivalent triangulations

related by **Pachner moves**

topological invariance by identifying states on equivalent triangulations

related by Pachner moves

sequence of Pachner moves is not unique

sequence of Pachner moves is not unique

F-symbols obey consistency condition

+ similar constraints for other branching structures

ire

F-symbols obey consistency condition

+ similar constraints for other branching structures

$$F_{ijk}^{lmn}$$

ire

$$G = \{1, i, j, k, \dots\}$$

bulk line defect described by $S^1 \times [0,1] =: T$

bulk line defect described by $S^1 \times [0,1] =: T$

bulk line defect described by $S^1 \times [0,1] =: T$

 V_T is not only a vector space...

...but also an algebra

multiplication * on V_T defined by linear map associated to

as an algebra, $V_T = \bigoplus_i T_i$ with T_i irreducible subspaces

 $(a, b, c, d)_T * (a', b', c', d')_T = \delta_{d,a'} \sum F_{yac}^{bb'x} F_{vbx}^{b'd'c'} \overline{F_{vbc}^{a'b'c'}} (a, x, y, d')_T$ x, y

 $V_T = \bigoplus_i T_i$ with T_i irreducible subspaces

 $V_T = \bigoplus T_i$ with T_i irreducible subspaces

decomposable:

 \exists central idempotents a, b : c = a + b

 c_i can be viewed as **projector onto** T_i

Example 1

Vec $^{\omega}(G)$ finite group G and (normalized) 3-cocycle ω

 $(g', h')_T * (g, h)_T$

with $\beta_g(h', h) = \omega(h'hg(h'h)^{-1}, h', h) \omega(h', h, g)$

irreps 1-1 with (c, ρ_c) and associated central idempotents are

$$c_{(c,\rho_c)}^T = \frac{\dim(\rho_c)}{|Z(c)|} \sum_{g \in c} \sum_{h \in Z(g)} \overline{\tilde{\chi}_{\rho_c}^g(h)}(g,h)_T$$

conjugacy class: *c*

 β_g -projective Irrep of centralizer Z(c): ρ_c

$$T = \delta_{g',hgh^{-1}}\beta_g(h',h)(g,h'h)_T$$

$$\omega(h', hgh^{-1}, h)$$

modify triangulation@ boundary: additional degrees of freedom on boundary vertices

states embedded into finite-dim. tensor product space

$$\mathcal{H} = \bigotimes_{\text{edges}} \operatorname{span}\{1, i, j, k, \dots\} \bigotimes_{\text{bdr'y vertices}}$$

span{ α, β, \dots }

modify triangulation@ boundary: additional degrees of freedom on boundary vertices

states embedded into finite-dim. tensor product space

$$\mathscr{H} = \bigotimes \operatorname{span}\{1, i, j, k, \dots\} \bigotimes$$

edges bdr'y vertices

with additional local constraints @ each boundary edge

$$i \triangleright \alpha = \bigoplus_{\beta} M_{i,\alpha}^{\beta} \ \beta, \quad M_{i,\alpha}^{\beta} \in \mathbb{Z}^+$$

consistent with bulk $N_{ij}^k \qquad i \triangleright (j \triangleright \alpha) \simeq (i \times j) \triangleright$

span{ α, β, \dots }

$$\alpha, \quad \forall i, j, \alpha$$

modify triangulation@ boundary: additional degrees of freedom on boundary vertices

Example 3 standard boundary

the simples of any bulk model $\{1, i, j, k, ...\}$ with

$$i \triangleright j = i \times j \quad \forall i, j$$

define a consistent boundary model

$$i \triangleright \alpha = \bigoplus_{\beta} M_{i,\alpha}^{\beta} \beta, \quad M_{i,\alpha}^{\beta} \in \mathbb{Z}^{+}$$

consistent with bulk N_{ii}^k $i \triangleright (j \triangleright \alpha) \simeq (i \times j) \triangleright \alpha, \forall i, j, \alpha$

topological invariance by adding moves at boundary

topological invariance by adding moves at boundary

induce linear maps, represented by

topological invariance by adding moves at boundary

equivalent sequences of moves

+ similar constraints for other branching structures

induce linear maps, represented by

topological invariance by adding moves at boundary

equivalent sequences of moves

+ similar constraints for other branching structures

induce linear maps, represented by

constraints on
$$\left\{ \{\alpha, \beta, \dots\}, \{M_{i\alpha}^{\beta}\}, \{L_{\alpha i j}^{\beta \gamma k}\} \right\}$$
 for bulk \mathscr{C} defines \mathscr{C} -module category \mathscr{A}

boundary line defect described by $[0,1] \times [0,1] =: S$

boundary line defect described by $[0,1] \times [0,1] =: S$

boundary line defect described by $[0,1] \times [0,1] =: S$

...but also an algebra

multiplication * on V_S defined by linear map associated to

multiplication * on V_S defined by linear map associated to

 $(\alpha',\beta',\gamma',\delta',a')_S*(\alpha,\beta)$

associated to central idempotents

$$\beta, \gamma, \delta, a)_{S} = \delta_{\alpha', \delta} \delta_{\beta', \gamma} \sum_{b} L_{\beta a a'}^{\gamma' \beta' b} \overline{L_{\alpha a a'}^{\delta' \alpha' b}}(\alpha, \beta, \delta', \gamma', b)$$

as an algebra, $V_S = \bigoplus S_j$ with S_j irreducible subspaces

Example 1'

for bulk Vec(G), a subgroup H together with a 2-cocycle $\psi: H^2 \to U(1)$ fulfilling

define valid boundary. Associated central idempotents of $S = \text{span}_{\mathbb{C}}\{(\alpha, \beta, g)_S\}$ are

 $\psi(a,b)\psi(ab,c) = \psi(a,bc)\psi(b,c)$ $\alpha,\beta\in G/H$ $c_{(x,\kappa_x)}^S = \frac{\dim(\kappa_x)}{|K_x|} \sum_{\alpha,\beta \in G/H} \sum_{g \in \mathbf{Stab}_G((\alpha,\beta))} \overline{\tilde{\chi}_{\kappa_x}^{(\alpha,\beta)}(g)}(\alpha,\beta,g)_S$

 $i : \text{Irrep } T_i \subseteq V_T$ $j : \text{Irrep } S_j \subseteq V_S$

 $m_{i,j}$: multiplicity of $T_i \otimes S_j \subseteq V_C$

 $m_{i,j}$: multiplicity of $T_i \otimes S_j \subseteq V_C$

bulk-to-boundary fusion multiplicities

actions ▷ and ⊲ commute

$$V_C = \bigoplus_{i,j} m_{i,j} T_i \otimes S_j$$

"bi-representation" of algebras V_T and V_S

bulk-to-boundary fusion multiplicities

actions ▷ and ⊲ commute

$$V_C = \bigoplus_{i,j} m_{i,j} T_i \otimes S_j$$

using central idempotents, we can project onto $m_{i,j}T_i \otimes S_j$

$$m_{i,j} = \frac{1}{\dim(T_i)di}$$

"bi-representation" of algebras V_T and V_S

 $\frac{1}{\dim(S_j)} \operatorname{Tr} \left(c_i^T \triangleright \bullet \triangleleft c_j^S \right)$

bulk-to-boundary fusion multiplicities

actions ▷ and ⊲ commute

$$V_C = \bigoplus_{i,j} m_{i,j} T_i \otimes S_j$$

using central idempotents, we can project or

we can **project onto**
$$m_{i,j}T_i \otimes S_j$$

$$m_{i,j} = \frac{1}{\dim(T_i)\dim(S_j)} \operatorname{Tr}\left(c_i^T \triangleright \triangleleft c_j^S\right)$$

Example 1: $\operatorname{Vec}^{\omega}(G)$ with valid subgroup H and 2-cocycle ψ

$$m_{(c,\rho_c),(x,\kappa_x)} = \frac{1}{|G|} \sum_{g \in c} \sum_{\substack{\alpha \in G/H \ h \in Z(g) \cap \mathsf{Stab}_G((g \triangleright \alpha, \alpha))}} \sum_{\psi^{\alpha}(h,g) \overline{\psi^{\alpha}(g,h)} \widetilde{\chi}^g_{\rho_c}(h) \overline{\widetilde{\chi}^{(g \triangleright \alpha,\alpha)}_{\kappa_x}(h)}}$$

"bi-representation" of algebras V_T and V_S

applications **TQFTs and topological quantum error correction**

- explicit construction of one more invariant for TQFTs with microscopic models
- restriction on trivial boundary anyon gives Lagrangian algebra object
 - algebra morphism calculated together with bulk anyon fusion vertex
- describing and designing QEC protocols based on topological codes with defects
 - code dimension
 - logical algebra
 - folding trick: interfaces between codes

applications **TQFTs and topological quantum error correction**

- explicit construction of one more invariant for TQFTs with microscopic models
- restriction on trivial boundary anyon gives Lagrangian algebra object
 - algebra morphism calculated together with bulk anyon fusion vertex
- describing and designing **QEC protocols** based on topological codes with defects
 - code dimension
 - logical algebra

. . .

folding trick: interfaces between codes

conclusion and outlook

- **microscopic models** for non-chiral topological theories with boundaries
- description of anyons in terms of tube algebra **
- construction of **bi-representation** describing **bulk-boundary fusion vertex** **
- explicit formula for Vec $^{\omega}(G)$ models for bulk-boundary fusion multiplicities **
- describe existing protocol(s) involving **twisted** gauge theory models (ongoing) include algebra morphism for condensable object (ongoing)
- resolving similar fusion vertex of line to line-on-surface defect in 3+1d
- understand more general defects in 3+1d with microscopic model

arXiv:2302.01835

Thank you! Questions?