Internal Levin–Wen models

Vincentas Mulevičius Vilnius university

Joint work 2309.05755 with Ingo Runkel and Thomas Voß

Winter Workshop on Topological Order University of Tübingen, 2023

Idea

Kitaev and Levin–Wen models give (some of the) topological phases. Both work similarly:

A yields a vector space X, one sets $V = \bigotimes_{v \in \Gamma_0} X^{|v|}$ and the Hamiltonian

$$H = \sum_{\mathbf{v} \in \Gamma_0} (\mathrm{id}_{\mathbf{V}} - P_{\mathbf{v}}) + \sum_{e \in \Gamma_1} (\mathrm{id}_{\mathbf{V}} - P_e) + \sum_{f \in \Gamma_2} (\mathrm{id}_{\mathbf{V}} - P_f)$$

where $P_c P_c = P_c$, $[P_c, P_{\tilde{c}}] = 0$ – commuting projectors.

Idea

Imagine the numerous topological phases that can live on a surface Σ :

Kitaev \subseteq Levin–Wen models gradually project onto the top. phase:

Idea

Imagine the numerous topological phases that can live on a surface Σ :

Internal Levin–Wen models gradually project a phase C onto a phase D:

Prerequisites

To define internal Levin-Wen models, we will need:

- 1. Reshetikhin-Turaev (RT) TQFTs with embedded ribbon graphs (a.k.a. graph TQFTs or TQFTs with line and point defects)
- 2. A generalisation of RT TQFTs which includes surface defects via internal (2d) state-sum
- 3. Internal (3d) state-sum or generalised orbifold construction on RT TQFTs with line and surface defects

In short:

 $\mathsf{graph} \ \mathsf{TQFT}Z_{\mathcal{C}}^{\mathsf{RT}} \xrightarrow{\mathsf{int.}\ 2d\ \mathsf{ss}} \mathsf{defect} \ \mathsf{TQFT}Z_{\mathcal{C}}^{\mathsf{def}} \xrightarrow{\mathsf{int.}\ 3d\ \mathsf{ss}} \mathsf{orbifold} \ \mathsf{TQFT}Z_{\mathcal{C}}^{\mathsf{orb}\,\mathbb{A}}$

Modular categories and anyons

Modular fusion category $\ensuremath{\mathcal{C}}$ is

- finitely semisimple: $C(X, Y) := Hom_C(X, Y) k$ -vector space,
 - $U simple \quad \Leftrightarrow \quad \mathcal{C}(U, U) \cong \Bbbk$,
 - $Irr_{\mathcal{C}} = \{U_i simple\}$ is finite,

•
$$X \cong \bigoplus_i U_i^{\bigoplus N_X^i}$$

• fusion: monoidal with \otimes linear on hom.'s

• braided:
$$c_{X,Y}: X \otimes Y \to Y \otimes X$$

- ▶ spherical: $ev_X : X^* \otimes X \to 1$, $coev_X : 1 \to X \otimes X^*$, $ev_X : X \otimes X^* \to 1$, $coev_X : 1 \to X^* \otimes X$, left trace = right trace
- modular: transparent obj.'s are $\mathbb{1}^{\oplus n}$ (i.e. Müger centre is $Vect_{\mathbb{k}}$)
- ▶ e.g. Vect_k, $\mathcal{Z}(\operatorname{Rep} G)$, $\mathcal{Z}(\operatorname{Rep} H)$, $\mathcal{Z}(\mathcal{S})$, ..., $\operatorname{Vect}_{\mathcal{A}}^{q}$, \mathcal{F} ib, \mathcal{I} sing, ...

Modular categories and anyons A modular fusion category C describes

point excitations \Leftrightarrow line and point defects \Leftrightarrow anyons in a 3 = (2 + 1)-dim. TQFT:

Reference example: Reshetikhin-Turaev construction

Reshetikhin-Turaev graph TQFT

[Reshetikhin-Turaev'91]

... is the symmetric monoidal functor

 \downarrow signature extension - to eliminate gluing anomaly

$$Z_{\mathcal{C}}^{\mathsf{RT}}: \underbrace{\widehat{\mathsf{Bord}_{3}^{\mathsf{rib}}}(\mathcal{C})}_{\mathcal{C}} \longrightarrow \mathsf{Vect}$$

3d bordisms w/ $\mathcal{C}\text{-ribbon graphs}$ - hence "graph TQFT"

obtained from a modular fusion category (MFC) ${\cal C}$ + a choice for $\sqrt{{\rm Dim}\,{\cal C}}_{[{\rm Turaev}'94]}$

by applying the universal construction on the RT invariants of closed 3d manifolds with embedded C-coloured ribbon graphs.

... is the symmetric monoidal functor

[Kapustin-Saulina'11] [Fuchs-Schweigert-Valentino'13] [Carqueville-Runkel-Schaumann'19]

 $\begin{array}{c} \downarrow \text{ 'defect datum' - labels and adjacency data}\\ Z^{\mathsf{def}}_{\mathcal{C}}: \ \widetilde{\mathsf{Bord}^{\mathsf{def}}_3}(\mathbb{D}^{\mathcal{C}}) \longrightarrow \mathsf{Vect} \end{array}$

stratified 3d bordisms

defined i.t.o. Z_{C}^{RT} via an internal 2d state-sum construction, e.g.

... is the symmetric monoidal functor

[Kapustin-Saulina'11] [Fuchs-Schweigert-Valentino'13] [Carqueville-Runkel-Schaumann'19]

 $\downarrow \text{`defect datum'} - \text{labels and adjacency data} \\ Z^{def}_{\mathcal{C}}: \ \widehat{\text{Bord}^{def}_3}(\mathbb{D}^{\mathcal{C}}) \longrightarrow \text{Vect}}$

stratified 3d bordisms

defined i.t.o. Z_{C}^{RT} via an internal 2d state-sum construction, e.g.

... is the symmetric monoidal functor

[Kapustin-Saulina'11] [Fuchs-Schweigert-Valentino'13] [Carqueville-Runkel-Schaumann'19]

↓ 'defect datum' - labels and adjacency data for strata $Z_{\mathcal{C}}^{\mathsf{def}} \colon \underbrace{\widehat{\mathsf{Bord}}_{3}^{\mathsf{def}}}_{\mathsf{stratified 3d bordisms}}^{\mathsf{def}}(\mathbb{D}^{\mathcal{C}}) \longrightarrow \mathsf{Vect}$

defined i.t.o. Z_{c}^{RT} via an internal 2d state-sum construction, e.g.

... is the symmetric monoidal functor

[Kapustin-Saulina'11] [Fuchs-Schweigert-Valentino'13] [Carqueville-Runkel-Schaumann'19]

 $\downarrow \text{`defect datum'} - \text{labels and adjacency data} \\ Z^{\text{def}}_{\mathcal{C}}: \ \widehat{\text{Bord}^{\text{def}}_3}(\mathbb{D}^{\mathcal{C}}) \longrightarrow \text{Vect}}$

stratified 3d bordisms

defined i.t.o. Z_{C}^{RT} via an internal 2d state-sum construction, e.g.

Reshetikhin-Turaev orbifold TQFT [Carqueville-Runkel-Schaumann'19-20] Carqueville-M-Runkel -Schaumann-Scherl'21]

... is the symmetric monoidal functor

 \downarrow 'orbifold datum'

$$Z^{\operatorname{orb} \mathbb{A}}_{\mathcal{C}} : \widehat{\operatorname{Bord}}_3 \longrightarrow \operatorname{Vect}$$

defined i.t.o. $Z_{\mathcal{C}}^{\text{def}}$ via an internal 3d state-sum construction, e.g.

- 3-strata are contractible;
- lines have 3 adjacent surfaces;
- points 4 adjacent lines
- local models + orientation constraints
- (e.g. like in duals of triangulations)

Reshetikhin-Turaev orbifold TQFT [Carqueville-Runkel-Schaumann'19-20] Carqueville-M-Runkel -Schaumann-Scherl'21] ... is the symmetric monoidal functor ⊥ 'orbifold datum' $Z_{\mathcal{C}}^{\operatorname{orb} \mathbb{A}} : \widehat{\operatorname{Bord}}_3 \longrightarrow \operatorname{Vect}$ defined i.t.o. Z_{C}^{def} via an internal 3d state-sum construction, e.g. An orbifold datum $\mathbb{A} = (A, T, \overline{\alpha}, \overline{\alpha}, \psi, \phi)$ carries the labels for the strata of the 2-skeleton: A - ssFA $\alpha: T \otimes_2 T \to T \otimes_1 T \qquad \overline{\alpha}: T \otimes_1 T \to T \otimes_2 T$ $_A T_{A\otimes A}$ - bimod. A- $(A \otimes A \otimes A)$ -bimodule morphisms ication is an admissible 2-skeleton: as well as some technicalities: 3-strata are contractible; • $\psi \colon \mathbb{1}_{\mathcal{C}} \to A$ for the separability condition lines ave 3 adjacent surfaces; points 4 adjacent lines • $\phi \in \mathbb{k}^{\times}$ - normalisation factor cal models + orientation constraints . like in duals of triangulations) and satisfies the conditions...

Internal Levin-Wen model: input data

- 1. Modular fusion category C with an object $X \in C$
- 2. Orbifold datum $\mathbb{A} = (A, T, \alpha, \overline{\alpha}, \psi, \phi)$ in \mathcal{C}
- 3. A-module Λ and module endomorphism $\gamma \colon \Lambda \to \Lambda$ such that

4. split idempotent $\pi: X \rightleftharpoons \Lambda^* \otimes_A T \otimes_{A \otimes A} (\Lambda \otimes \Lambda) : i$

5. oriented surface Σ and an admissible skeleton $\Gamma \subseteq \Sigma$.

Internal Levin-Wen model: construction

The state space is defined to be

$$V := Z_{\mathcal{C}}^{\mathsf{RT}} \left(\underbrace{\Sigma \text{ with anyons } X^{|v|} \in \mathcal{C} \text{ at vertices } v \in \Gamma_0}_{"} \right)$$

From the definition of Z_{C}^{RT} follows:

$$V \cong \mathcal{C}(1, \bigotimes_{v \in \Gamma_0} X^{|v|} \otimes L^{\otimes g}), \qquad \underbrace{L = \bigoplus_{i \in \operatorname{Irr}_{\mathcal{C}}} U_i \otimes U_i^*}_{\operatorname{coend}} \in \mathcal{C}.$$

Note: the model is not local unless $\mathcal{C} = Vect_{\Bbbk}$.

Internal Levin-Wen model: construction

The Hamiltonian is defined to be

$$H := \sum_{v \in \Gamma_0} (\mathrm{id}_V - P_v) + \sum_{v \in \Gamma_1} (\mathrm{id}_V - P_e) + \sum_{v \in \Gamma_2} (\mathrm{id}_V - P_f)$$

where

Note: since $\pi \circ i = id$, P_v is a projector.

Internal Levin–Wen model: construction

The Hamiltonian is defined to be

$$H := \sum_{\mathbf{v} \in \Gamma_0} (\mathrm{id}_{\mathbf{V}} - P_{\mathbf{v}}) + \sum_{\mathbf{v} \in \Gamma_1} (\mathrm{id}_{\mathbf{V}} - P_e) + \sum_{\mathbf{v} \in \Gamma_2} (\mathrm{id}_{\mathbf{V}} - P_f)$$

where

Internal Levin–Wen model: construction

The Hamiltonian is defined to be

$$H := \sum_{v \in \Gamma_0} (\mathrm{id}_V - P_v) + \sum_{v \in \Gamma_1} (\mathrm{id}_V - P_e) + \sum_{v \in \Gamma_2} (\mathrm{id}_V - P_f)$$

where

Properties of internal Levin-Wen model

Claim: P_v , P_e , P_f are commuting projectors.

For example $P_e P_e = P_e$ is given by

Properties of internal Levin-Wen model

Claim: P_v , P_e , P_f are commuting projectors. For example $P_f P_f = P_f$ is given by

Ground state

• As in original LW have:

$$V_0 = \bigcap_{f \in \Gamma_f} \operatorname{im} P_f = \operatorname{im} \prod_{f \in \Gamma_f} P_f = \operatorname{im} Z_{\mathcal{C}}^{\mathsf{def}}(\bigcap_{f \in \Gamma_f} P_f = \operatorname{im} Z_{\mathcal{C}}^{\mathsf{orb}\,\mathbb{A}}(\Sigma)) = Z_{\mathcal{C}}^{\mathsf{orb}\,\mathbb{A}}(\Sigma)$$

- <u>Thm.</u> For \mathbb{A} simple, have an isomorphism of TQFTs $Z_{\mathcal{C}}^{\mathsf{orb}\,\mathbb{A}} \cong Z_{\mathcal{C}_{\mathbb{A}}}^{\mathsf{RT}}$.
- ▶ *C* and *D* are Witt equivalent ⇔ ∃ spherical fusion category *S*, s.t. *C* ⊠ *D*^{rev} ≅ *Z*(*S*) ⇔ ∃ orb. datum A in *C* s. t. *D* ≃ *C*_A. [M'22]

).

Examples of orbifold data (\Rightarrow internal LW models)

Drinfeld doubles:

A finite dimensional semisimple Hopf algebra K yields a simple orbifold datum in Vect_k:

$$\mathbb{A}_{\mathcal{K}} = \left(A = \mathcal{K}_{Fr}, \quad T = \mathcal{K}^{\otimes 2}, \quad \dots \right) \cdot \underbrace{\begin{bmatrix} \mathcal{K}_{Fr} - \mathsf{ssFA} \ \mathsf{w/pairing} \\ h \mapsto \dim H \ \S h \end{bmatrix}}_{h \mapsto \dim H \ \S h}$$

Have: $(\operatorname{Vect}_{\Bbbk})_{\mathbb{A}_{K}} \simeq D(H) - \operatorname{Rep}$ and internal LW for $\mathbb{A}_{K} \sim \operatorname{Kitaev}$ model.

> [Carqueville-Runkel-Schaumann'19-20] [M-Runkel'20]

Drinfeld centres:

A spherical fusion category ${\mathcal S}$ yields a simple orbifold datum in $\mathsf{Vect}_\Bbbk\colon$

$$\mathbb{A}_{\mathcal{S}} = \left(A = \mathbb{k}^{\bigoplus |\mathsf{Irr}_{\mathcal{S}}|}, \ T = \bigoplus_{i,j,k \in \mathsf{Irr}_{\mathcal{S}}} \mathcal{S}(k,i \otimes j), \ \alpha, \overline{\alpha} \leftarrow F\text{-symbols of } \mathcal{S}, \ \dots \right)$$

 $\begin{array}{ll} \mathsf{Have:} \ (\mathsf{Vect}_\Bbbk)_{\mathbb{A}_\mathcal{S}} \simeq \mathcal{Z}(\mathcal{S}) & \text{ and} \\ & \text{ internal LW for } \mathbb{A}_\mathcal{S} \ \sim \mbox{ original LW model.} \end{array}$

Further examples of orbifold data

Condensations:

C - modular fusion category, $B \in C$ - condensable algebra hybrid hyb

Have: $\mathcal{C}_{\mathbb{B}} \simeq \mathcal{C}_{B}^{\mathsf{loc}}$ - the category of local (dyslectic) modules

• Un-condensations: $\begin{array}{l} [M'22]\\ \underline{\text{Thm.}} \end{array} \text{ There is a simple orbifold datum } \mathbb{A} \text{ in } \mathcal{C}_B^{\mathsf{loc}} \text{ s.t. } (\mathcal{C}_B^{\mathsf{loc}})_{\mathbb{A}} \simeq \mathcal{C}. \end{array}$

Explicit example: [M-Runkel'20]

$$C = C(sl_2, 10), \quad B = \underline{0} \oplus \underline{6} - \text{the } `E_6 \text{ algebra'}$$

 $\Rightarrow C_B^{\text{loc}} \simeq \mathcal{I} - (\text{an}) \text{ Ising category.}$

[Carqueville-Runkel-Schaumann'19-20] [M-Runkel'20]

i.e. commutative haploid ssFA

Orbifold data vs related notions

Final remarks

Possible future work:

<u>۱</u>

- 1. category $\mathcal{C}_{\mathbb{A}} \hspace{0.1 in} \leadsto \hspace{0.1 in}$ excitations of internal Levin–Wen;
- 2. string-net description of the ground state space
 - cf. [Huston-Kawagoe-Penneys-Poudel-Sanford] 2305.14068
- 3. similar models in other TQFTs:
 - 2d Landau–Ginzburg [Carqueville–Murfett–Montiel-Montoya]
 - 3d Turaev–Viro [Meusburger'22] [Cargueville–Müller] 2307.06485

[Lootens–Fuchs–Haegeman–Schweigert–Verstraete'20]

Applications to tensor networks

- 3d Rozansky–Witten [Brunner–Carqueville–Fragkos–Roggenkamp] 2307.06284
- 4d Douglas–Reutter
- Related notion: condensation monads [Gaiotto–Johnson-Freyd'19]

Thank you!

MFCs from orbifold data

Question: Is the TQFT $Z_{\mathcal{C}}^{\text{orb}\,\mathbb{A}}$ again of Reshetikhin-Turaev type? If so, one must include embedded ribbon graphs into $Z_{\mathcal{C}}^{\text{orb}\,\mathbb{A}}$

Definition

For an orbifold datum $\mathbb{A} = (A, T, \alpha, \overline{\alpha}, \psi, \phi)$, define the category $\mathcal{C}_{\mathbb{A}}$ with

MFCs from orbifold data

[M-Runkel'20]

• morphisms: $f: M \rightarrow N$ is an A-A-bimodule morphism such that

MFCs from orbifold data

[M-Runkel'20]

Theorem If \mathbb{A} is simple (i.e. $\mathbb{1}_{\mathcal{C}_{\mathbb{A}}} := A$ is simple) then $\mathcal{C}_{\mathbb{A}}$ is a MFC.

Reshetikhin-Turaev orbifold graph TQFT [Carqueville-M-Runkel -Schaumann-Scherl'21]

... is the symmetric monoidal functor

 $Z^{\mathsf{orb}\,\mathbb{A}}_{\mathcal{C}}\colon \widehat{\mathsf{Bord}}_3(\mathcal{C}_{\mathbb{A}}) \longrightarrow \mathsf{Vect}$

defined i.t.o. Z_{C}^{def} via an internal 3d state-sum construction in which the ribbon graphs are embedded into the foam e.g.

- admissible 2-skeleton+ribbon graph;
- intersection points labelled by τ 's;

Theorem If \mathbb{A} is simple then the graph TQFTs $Z_{C_{\mathbb{A}}}^{\mathsf{RT}}$ and $Z_{C}^{\mathsf{orb}\,\mathbb{A}}$ are isomorphic.