Non-Abelian topological Berry phases

J.-S. Xu, K. Sun, Y.-J. Han, C. F. Li, G.-C. Guo, JKP,...

Nature Commun. 7, 13194 (2016) Science Advances 4, eaat6533 (2018) PRX Quantum 2, 030323 (2021) M. Malik, arXiv:2304.05286 (2023)

Tübingen, November 2023

(150) 42 40 4 2

University of Science and Technology of China

A
UNIVERSITY OF LEEDS

Popularity of non-Abelian anyons

NewScientist

Sign in 2

Entesearchemoross ©

(f) quantum computing Ianalysis

Health Space Physics Technology Environment Mind Humans Life Mathematics Chemistry Earth Society
Physics
Weird particle that remembers its past discovered by quantum computer
Particles with unusual properties called anyons have long been sought after as a potential building block for advanced quantum computers, and now researchers have found one - using a quantum computer
By Alex Wilkins
当 9 May 2023

- Quantinuum

New type of quasiparticle emerges to tame quantum
computing errors

Topological manipulations: A graphic representing non-Abelian braiding of graph vertices in a

Particle statistics

Exchange two identical particles:

Statistical symmetry:
Physics stays the same, but $|\Psi\rangle$ could change!

$$
\left|\Psi\left(x_{1}, x_{2}\right)\right\rangle=? ? ?\left|\Psi\left(x_{2}, x_{1}\right)\right\rangle
$$

Overview

Superconducting Hamiltonians:

- Topological phase of matter
- Majoranas - D(S_{3})

But SC are tricky:

- Non-conservation of particles
- Zero energy, localisation at boundary
- Braiding not possible (yet)

Spin-1/2 are easy to simulate (photons, atoms, ions, Josephson junctions, NMR,...)

We find spin analogs of SC and simulate braiding.

Superconducting fermion chain

Consider two sites with tunnelling and pairing interactions

$$
H_{\mathrm{SC}}=-\sqrt[a_{1}^{\dagger} a_{2}+a_{2}^{\dagger} a_{1}]{ }+a_{1}^{\dagger} a_{2}^{\dagger}+a_{2} a_{1}
$$

Number of fermions is not conserved due to pairing term.
Parity of fermions is conserved.
We will treat this Hamiltonian in two ways:
Fermions
Spins

From fermions to spins

Consider the Jordan-Wigner transformation:

$$
\begin{array}{ll}
a_{i}=\left(\prod_{j<i} \sigma_{j}^{z}\right) \sigma_{i}^{+}, \quad a_{i}^{\dagger}=\left(\prod_{j<i} \sigma_{j}^{z}\right) \sigma_{i}^{-}, \\
a_{1}=\sigma_{1}^{+}, \quad a_{2}=\sigma_{1}^{z} \sigma_{2}^{+} & a_{1} \bigcirc \quad \longrightarrow a_{2}
\end{array}
$$

Then we have:

$$
H_{\mathrm{SC}}=-\left(a_{1}^{\dagger} a_{2}+a_{1}^{\dagger} a_{2}^{\dagger}+\text { h.c. }\right)=-\left(\sigma_{1}^{-} \sigma_{1}^{z} \sigma_{2}^{+}+\sigma_{1}^{-} \sigma_{1}^{z} \sigma_{2}^{-}+\text {h.c. }\right)
$$

$-\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)_{1}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)_{1}\left(\sigma_{2}^{+}+\sigma_{2}^{-}\right)+$h.c. $=-\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)_{1}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)_{2}=-\sigma_{1}^{x} \sigma_{2}^{x}$

The Ising Hamiltonian

The resulting spin Hamiltonian is

$$
H_{\text {spin }}=-\sigma_{1}^{x} \sigma_{2}^{x} \quad|-\rangle=\frac{1}{2}(|\uparrow\rangle-|\downarrow\rangle)
$$

\bigcirc
The ground and excited states are doubly degenerate

Use ground states to encode a qubit:

$$
|\psi\rangle=\alpha|0\rangle_{L}+\beta|1\rangle_{L}=\alpha|++\rangle+\beta|--\rangle
$$

Majoranas from fermions

"Real" and "imaginary" decomposition gives Majoranas:

$$
\gamma_{1}=\frac{a+a^{\dagger}}{2}, \quad \gamma_{2}=\frac{a-a^{\dagger}}{2 i}
$$

They are fermions that are their own antiparticles:

$$
\gamma_{j}^{\dagger}=\gamma_{j}
$$

Up to now Majoranas are just a mathematical construction.

From fermions to Majoranas

Write superconducting Hamiltonian in Majoranas:

$$
\begin{gathered}
H_{\mathrm{SC}}=-\left(a_{1}^{\dagger} a_{2}+a_{1}^{\dagger} a_{2}^{\dagger}+\text { h.c. }\right)= \\
-\left(\gamma_{1}-i \gamma_{2}\right)\left(\gamma_{3}+i \gamma_{4}\right)-\left(\gamma_{1}-i \gamma_{2}\right)\left(\gamma_{3}-i \gamma_{4}\right)+\text { h.c. }=-4 i \gamma_{2} \gamma_{3} \\
b=\gamma_{1}+i \gamma_{4}
\end{gathered}
$$

QC: Manage expectations

- Tiny energy gap:
- Temperature
- Finite extend:
- Perturbations
- Position inaccuracy
- Adiabatic transport
- State manipulations:
- Preparation
- Measurement

What are Majoranas?

Kitaev vs Ising

The JW trans is non-local.

$$
a_{i}=\left(\prod_{j<i} \sigma_{j}^{z}\right) \sigma_{i}^{+}, \quad a_{i}^{\dagger}=\left(\prod_{j<i} \sigma_{j}^{z}\right) \sigma_{i}^{-},
$$

Both Hamiltonians are local.

Spectrum is the same: unitary time evolution operators are the same.
Eigenstates have different properties:
Local Majorana quasiparticles that do not overlap map to spin states with complete overlap.

Unitary mapping

Majoranas as anyons

Fusion and braiding of Majorana fermions

Similarly:

$$
\begin{aligned}
|00\rangle_{b} & =-\frac{1}{\sqrt{2}}\left(|00\rangle_{a}-|11\rangle_{a}\right) \\
F & =\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

Majoranas as anyons

Adiabatic braiding of Majorana fermions
γ_{1}
a_{1}
γ_{2}
Braiding

$$
\mathcal{U}=a \mathbf{1}+b \gamma_{1}+c \gamma_{3}+d \gamma_{1} \gamma_{3}
$$

$$
\mathcal{U}^{\dagger} \mathcal{U}=1, \mathcal{U} \gamma_{1} \mathcal{U}^{\dagger} \propto \gamma_{3}, \mathcal{U} \gamma_{3} \mathcal{U}^{\dagger} \propto \gamma_{1}
$$

γ_{3}
This gives two possible solutions

$$
\mathcal{U}^{2}=e^{i \pi}
$$

$\mathcal{U}^{2}=e^{i \pi / 4}\left(a_{1} a_{2}+a_{1} a_{2}^{\dagger}+a_{1}^{\dagger} a_{2}+a_{1}^{\dagger} a_{2}^{\dagger}\right) \leftarrow$ Science Advances

Photonic quantum simulator

Produce geometric phases:
Adiabatically change Hamiltonians ->
Majoranas A and B are exchanged.

Translate Majoranas to spins: JW transf.

Do spin adiabatic evolution.

Photonic quantum simulator

Adiabatic dissipative evolution:

$$
\varphi_{\mathrm{g}}=-\arg \left(\left\langle m_{L f}\right| P_{1} P_{2} \cdots P_{n}\left|m_{L f}\right\rangle\right)
$$

P_{j} project the state to the eigenstate of H_{j}

Can take

$$
P_{j} \approx e^{-H_{j} t}
$$

for large t.
"Imaginary-time evolution"

Photonic quantum simulator

Three spins: $2^{3}=8$ states:

$$
|\Psi\rangle=\sum_{j=1}^{8} c_{j}|j\rangle
$$

Pre: State preparation HWP: Half Wave Plate
BD: Beam Displacer 30 or 60 mm
Use photonic mode for spin state Use polarisation to couple to the environment

Photonic quantum simulator

$$
|\Psi\rangle=\sum_{j=1}^{8} c_{j}|j\rangle
$$

Produce geometric phases:

$\begin{array}{llll}x x x & x \bar{x} x & x x \bar{x} & x \bar{x} \bar{x}\end{array}$

$$
|\Psi\rangle=\alpha|x x x\rangle+\beta|\bar{x} \bar{x} \bar{x}\rangle
$$

Photonic quantum simulator

Produce geometric phases:

Abelian Statistics

Experimentally produced geometric phases:

$$
\varphi_{g} \approx \pi / 2
$$

Fidelity:

$$
94.13 \pm 0.04 \%
$$

(errors deduced from Poissonian photon counting noise)
$|\Psi\rangle=\alpha|x x x\rangle+\beta|\bar{x} \bar{x} \bar{x}\rangle$

b

Final states

[Nature Commun. 7, 13194 (2016)]
Tomography

Non-Abelian Statistics

Exchange A and C Majorana fermions

b

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \quad R=\left(\begin{array}{cc}
1 & 0 \\
0 & i
\end{array}\right) \quad T=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \pi / 4}
\end{array}\right)
$$

Non-Abelian statistics emerges as $H R \neq R H$

Non-Abelian Statistics

Exchange A and C Majorana fermions

Non-Abelian statistics emerges. $2^{6}=64$ states!

Non-Abelian Statistics

To implement it we use the following processes:

Non-Abelian Statistics

Fidelities:
Most gates F>97\% Total Fidelity >91\%

Errors:

No errors Errors on 4 Errors on 3485 等 4 Errors

Algorithm

Deutsch-Jozsa Algorithm:

$$
|0\rangle=H R^{2} H|0\rangle
$$

$|1\rangle=H \Perp H|0\rangle$

Scaling

Using successive feedback of states.

Non-Abelian $D\left(S_{3}\right)$ Q. Double

$$
S_{3}=\left\{e, c, c^{2}, t, t c, t c^{2}\right\}
$$

Anyons:

$$
\{A, B, C, D, E, F, G, H\}
$$

Fusions:

$$
B \times B=A,
$$

$B \times G=G, G \times G=A+B+G$

Braiding:

$$
F_{G G G}^{G}=\frac{1}{2}\left(\begin{array}{ccc}
1 & 1 & \sqrt{2} \\
1 & 1 & -\sqrt{2} \\
\sqrt{2} & -\sqrt{2} & 0
\end{array}\right), R^{G G}=\left(\begin{array}{ccc}
\bar{\omega} & 0 & 0 \\
0 & \bar{\omega} & 0 \\
0 & 0 & \omega
\end{array}\right)
$$

Non-Abelian $D\left(S_{3}\right)$ Q. Double

Ribbon operators:

$$
\begin{aligned}
& F_{\tau}^{A}=|e\rangle\langle e|+|c\rangle\langle c|+\left|c^{2}\right\rangle\left\langle c^{2}\right|+|t\rangle\langle t|+|t c\rangle\langle t c|+\left|t c^{2}\right\rangle\left\langle t c^{2}\right| \\
& F_{\tau}^{B}=|e\rangle\langle e|+|c\rangle\langle c|+\left|c^{2}\right\rangle\left\langle c^{2}\right|-|t\rangle\langle t|-|t c\rangle\langle t c|-\left|t c^{2}\right\rangle\left\langle t c^{2}\right|
\end{aligned}
$$

$$
F_{\rho_{0}}^{G}=|c\rangle\langle e|+\omega\left|c^{2}\right\rangle\langle c|+\bar{\omega}|e\rangle\left\langle c^{2}\right|+\text { h.c. }
$$

$$
G \times G=A+B+G
$$

$$
F_{G G G}^{G}=\frac{1}{2}\left(\begin{array}{ccc}
\begin{array}{|cc|}
1 & 1 \\
1 & 1
\end{array} & \sqrt{2} \\
-\sqrt{2} \\
\sqrt{2} & -\sqrt{2} & 0
\end{array}\right), R^{G G}=\left(\begin{array}{ccc}
\bar{\omega} & 0 & 0 \\
0 & \bar{\omega} & 0 \\
0 & 0 & \omega
\end{array}\right)
$$

Non-Abelian $D\left(S_{3}\right)$ Q. Double

Braiding operations:

$$
\begin{aligned}
& F_{\rho_{0}}^{G} F_{\rho_{0}}^{G}=F_{\rho_{0}}^{A}+F_{\rho_{0}}^{B}+F_{\rho_{0}}^{G} \\
& F_{\rho_{2}}^{G} F_{\rho_{1}}^{G}=\bar{\omega}\left(F_{\rho_{0}}^{A}+F_{\rho_{0}}^{B}\right)+\omega F_{\rho_{0}}^{G}
\end{aligned}
$$

$$
F_{\rho_{1}}^{G} F_{\rho_{2}}^{G}=R^{G G} F_{\rho_{2}}^{G} F_{\rho_{1}}^{G}
$$

Operation (\mathbf{T})	Fidelity $\left(\mathcal{F}\left(\rho_{\mathcal{T}}, \rho_{\tilde{\mathcal{T}}}\right)\right)$	Purity $\left(\mathcal{P}\left(\rho_{\tilde{\mathcal{T}}}\right)\right)$
$F_{\rho_{0}}^{G}$	$95.23 \pm 0.93 \%$	$96.04 \pm 0.03 \%$
$F_{\rho_{1}}^{G} F_{\rho_{2}}^{G}$	$94.44 \pm 0.85 \%$	$97.65 \pm 0.05 \%$
$F_{\rho_{2}}^{G} F_{\rho_{1}}^{G}$	$97.59 \pm 0.59 \%$	$94.43 \pm 0.06 \%$

Summary

- Here we simulated their braiding properties, construct one-qubit gates, demonstrate fault-tolerance and a simple algorithm/Jones polynomials.
- Outlook:
- Quantum algorithms
- Quantum Machine Learning
- Quantum error correction

