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Motivation: Quantum state preparation

Quantum computing Quantum simulation

Given the description of a quantum state, how we create it on quantum hardware?

Which states can be created with a reasonable amount of resources?

... Complexity of operations is 
restricted by noise and 

(often) locality
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Topological phases, complexity, and state preparation

Topological phases is a classification 
according to entanglement complexity Same phase implies 

“Roughly the same” 
circuit complexity

States in the same phase can be connected 
by a shallow-depth, local quantum circuit

States in the trivial 
phase are feasible to 
prepare in a quantum 

simulator

Phase = Equivalence class

Hastings, Wen, PRB ‘05
Chen, Gu, Wen PRB ‘11
Haah et al. FOCS18
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MPS are a fundamental part of many-body systems in 1D:

● Express ground states of local Hamiltonians

● Topological Phases classification

● Natural and efficient language for entanglement
Injective 

(trivial phase)

non-injective 
(non-trivial 

phase)

MPS

Sequential preparation
● Applies to every MPS
● Depth T = O(N)
● Exact and explicit

Adiabatic preparation
● Injective MPS (trivial phase)
● Depth T = O(Polylog(N/ε)
● Implicit (Hamiltonian simulation)

How can MPS be prepared?

Preparation of MPS

Schön et al. PRA ‘07
Ge et al. PRL ‘16
Bachmann et al. CMP ‘18
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What are the limits to MPS preparation?

● What is the best possible scaling for injective MPS?
● How to achieve it?

Is it possible to connect phases without a blowup in the complexity?

● How can measurements speed-up state preparation?

Preparation of MPS

Briegel et al., PRL ‘01
Raussendorf et al, PRA ‘05
Aguado et al., PRL ‘08

Piroli et al., PRL ‘21
Tantivasadakarn et al., ‘21
Lu et al., PRXQ ‘22
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Main Results

i) Lower bound on the complexity of preparing injective MPS:

● It is impossible to faithfully prepare any 
translational-invariant injective MPS over N sites 
with a local quantum circuit of depth o(log N)
(unless it is a product state)

ii) Introduce an explicit algorithm for preparing injective MPS with 
the optimal possible asymptotic scaling O(log N)

● Establishes the exact circuit complexity of injective MPS

● Key technical tool is MPS renormalization
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Main Results

iii) Adapt the algorithm to include measurements. Then any MPS 
can be prepared in:

● O(log N) depth and 1-round of measurements, or
● O(log log N) depth and O(log N) rounds of measurements
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Lower bound for the preparation of injective MPS

Target state 
(injective MPS)

Finite depth circuit 
approximation

(strict light cone)

Difference in 
correlations is key to 
prove complexity 

lower bound

Theorem. Given
● a sequence of normal TI-MPS                  with nonzero correlation length, and
●  a sequence                   of outputs from a local quantum circuit of depth T applies to product 

states, then:

If T = o(log N), there exists N0 such that for all N > N0, 
we have                                   .
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Piroli, GS, Cirac, PRL ‘21
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approximate with the RG fixed point

(iii) Approximate state

Theorem: Blocking q= 2ξ log(N) 
sites suffices to have a vanishing 
error in the thermodynamic limit 



CS

Preparing MPS with renormalization group (RG) transformation

Goal: Given an injective tensor A, prepare the corresponding MPS over N sites with O(log N) depth

Piroli, GS, Cirac, PRL ‘21

(i) Blocking (ii) Polar decomposition and 
approximate with the RG fixed point

(iii) Approximate state

Theorem: Blocking q= 2ξ log(N) 
sites suffices to have a vanishing 
error in the thermodynamic limit 

How hard is to implement the isometry V?
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Efficient implementation of the isometry

Sequential Scheme Tree Scheme

Challenge: Implement the isometry                 over output ~log N sites with O(log N) depth

Protocol: Create entangled pairs and apply isometries

Each V has:
● O(log log N) layers (long-range gates)
● O(log N) depth for local gates

● Each V has O(log N) depth
● Each gate has support over 

at most d D2 sites
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Exponential Speed-up using measurements

Sequential Scheme
Tree Scheme

For a general tensor,
RG fixed point has a long-range part:

Injectivity implies short-range RG fixed-point:

Use teleportation to implement long-range gates.
● Each layer now takes constant time.
● Depth O(log log N) with O(log N) rounds of 

measurements

One round of measurements is enough to deterministically create the fixed point

Measurements are used only for the 
creation of the fixed point.

● Each isometry takes O(log N) depth 
(no measurements)

● Depth O(log N) with single round of 
measurements

Lu et al., PRXQ ‘22
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Inhomogeneous MPS

For translation-invariant MPS, correlation length is defined by the 
subleading eigenvalue of the transfer matrix [ξ = -1/ln(λ2)]

For inhomogeneous MPS, injectivity alone does not guarantee finite correlation length

“Definition” (Short-range correlated inhomogeneous MPS): A sequence of MPS               

is short-range correlated if blocking q=O(log N) sites the state can be well-approximated, 

up to local isometries, by:
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Inhomogeneous MPS

Are “generic” inhomogeneous MPS short-range correlated?

Yes!

Garnerone, Oliveira, Zanardi, PRA ‘10
Chen, Gu, Wen, PRB ‘11
Haferkamp, Bertoni, Roth, Eisert, PRXQ ‘21
Lancien, Pérez-García, AHP ‘21
Haag, Baccari, GS, PRXQ ‘23
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Inhomogeneous MPS

Are “generic” inhomogeneous MPS short-range correlated?

Yes!

Garnerone, Oliveira, Zanardi, PRA ‘10
Chen, Gu, Wen, PRB ‘11
Haferkamp, Bertoni, Roth, Eisert, PRXQ ‘21
Lancien, Pérez-García, AHP ‘21
Haag, Baccari, GS, PRXQ ‘23

Haar random D = 2 MPS tensors

Error of the state drops 
exponentially in the size of 
block q as in translation-

invariant
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Summary and outlook
● Measurements change the preparation complexity of MPS (and topological states 

in higher spatial dimensions!)

● Lower bound Ω(log N) for the circuit complexity of injective MPS (i.e., trivial phase 

of 1D gapped local Hamiltonian ground states).

● Explicit algorithm to saturate the bound → optimal asymptotic scaling. Improves 

O(Polylog N) depth (adiabatic preparation) to O(log N).

● Exponential speedup with measurements to depth O(log log N) for any MPS.
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Summary and outlook
● Measurements change the preparation complexity of MPS (and topological states 

in higher spatial dimensions!)

● Lower bound Ω(log N) for the circuit complexity of injective MPS (i.e., trivial phase 

of 1D gapped local Hamiltonian ground states).

● Explicit algorithm to saturate the bound → optimal asymptotic scaling. Improves 

O(Polylog N) depth (adiabatic preparation) to O(log N).

● Exponential speedup with measurements to depth O(log log N) for any MPS.

Future directions: PEPS?
● By blocking fixed point is approached “rapidly”

● Resulting isometry is “easy”

● Non-trivial class?

Thank you!
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Sequential generation of MPS

MPS in canonical form

isometry

Sequential circuit can create 
long-range correlations

However, ground states of 1D gapped local Hamiltonians 
(and injective MPS) have exponentially-decaying 

correlations

Linear depth is necessary for GHZ and other long-range entangled MPS

Bravyi et al., PRL '06
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