Classifying Topological Many-Body Localized Phases

Thorsten B. Wahl

Cavendish Laboratory, Department of Physics, University of Cambridge

University of Tübingen, 4 December 2023

Collaborators:

Benjamin Béri (Cambridge) Bo Han (Weizmann) Florian Venn (Cambridge) Sergii Strelchuk (Cambridge) Amos Chan (Lancaster) Joey Li (Innsbruck)

Steven Simon (Oxford) Arijeet Pal (UCL)

Marie Skłodowska-Curie Actions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

MBL formalism

SPT MBL in 1D

SPT MBL in 2D

Topologically ordered MBL

Thermalization in classical systems

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ � � �

taken from: M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H. Fischer, R. Vosk, E. Altman, U. Schneider, and I. Bloch, Science **349**, 842 (2015) $\langle \Box \rangle \langle A \rangle$

Theralizing behavior in higher dimensions

W. De Roeck, J. Z. Imbrie, Phil. Trans. R. Soc. A 375, 20160422 (2017).

But:

taken from: J.-y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, and C. Gross, Science **352**, 1547 (2016).

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 包 へ ()

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Table of contents

- 2 Many-body localization formalism
- 3 Symmetry-protected topological MBL in 1D
- 4 Symmetry-protected topological MBL in 2D
- 5 Topologically ordered MBL

Table of contents

Motivation

2 Many-body localization formalism

3 Symmetry-protected topological MBL in 1D

4 Symmetry-protected topological MBL in 2D

5 Topologically ordered MBL

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへぐ

Many-body localization (MBL)

Disordered Heisenberg antiferromagnet: MBL for $W > W_c \approx 3.5J$

$$H = \sum_{i=1}^{N} (J \mathbf{S}_i \cdot \mathbf{S}_{i+1} + h_i S_i^z), \quad h_i \in [-W, W]$$

\$ \$ \$ \$ \$ \$ \$

Topologically ordered MBL

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Many-body localization (MBL)

Disordered Heisenberg antiferromagnet: MBL for $W > W_c \approx 3.5J$

Local integrals of motion (LIOM):

M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. Lett. 110, 260601 (2013)

D. A. Huse and V. Oganesyan, Phys. Rev. B 90, 174202 (2014)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

M. Friesdorf, A. H. Werner, W. Brown, V. B. Scholz, and J. Eisert, Phys. Rev. Lett. 114, 170505 (2015).

M. Friesdorf, A. H. Werner, W. Brown, V. B. Scholz, and J. Eisert, Phys. Rev. Lett. 114, 170505 (2015).

D. J. Luitz, N. Laflorencie, and F. Alet, Phys. Rev. B 91, 081103 (2015) However: W. De Roeck, F. Huveneers, M. Müller, and M. Schiulaz, Phys. Rev. B 93, 014203 (2016) = + (= +) = - (- +) (- +

SPT MBL in 1D

SPT MBL in 2D

Topologically ordered MBL

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Representation by Quantum Circuits

- F. Pollmann, V. Khemani, J. I. Cirac, and S. L. Sondhi, Phys. Rev. B 94, 041116 (2016),
- T. B. Wahl, A. Pal, and S. H. Simon, Phys. Rev. X 7, 021018 (2017)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Table of content

- 2 Many-body localization formalism
- 3 Symmetry-protected topological MBL in 1D
- 4 Symmetry-protected topological MBL in 2D
- 5 Topologically ordered MBL

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Table of content

1 Motivation

2 Many-body localization formalism

3 Symmetry-protected topological MBL in 1D

- 4 Symmetry-protected topological MBL in 2D
- 5 Topologically ordered MBL

SPT MBL in 1D

SPT MBL in 2D

Topologically ordered MBL

ъ

Sac

Topological Many-body Localized Phases

Cluster model:

Clean system

$$H = \sum_{j=1}^{N} \sigma_{j-1}^{x} \sigma_{j}^{z} \sigma_{j+1}^{x}$$

topological index: $ww^* = \pm 1$

Y. Bahri, R. Vosk, E. Altman and A. Vishwanath, Nat. Commun. 6, 7341 (2015) K. S. C. Decker, D. M. Kennes, J. Eisert, and C. Karrasch, Phys. Rev. B 101, 014208 (2020)
 Motivation
 MBL formalism
 SPT MBL in 1D
 SPT MBL in 2D

 Topological Many-body Localized Phases

Cluster model:

Clean system

$$H = \sum_{j=1}^{N} \sigma_{j-1}^{x} \sigma_{j}^{z} \sigma_{j+1}^{x}$$

topological index: $ww^* = \pm 1$

Disordered system

$$H = \sum_{j=1}^{N} \lambda_j \sigma_{j-1}^x \sigma_j^z \sigma_{j+1}^x$$

topological index: $ww^* = \pm 1$

Y. Bahri, R. Vosk, E. Altman and A. Vishwanath, Nat. Commun. 6, 7341 (2015) K. S. C. Decker, D. M. Kennes, J. Eisert, and C. Karrasch, Phys. Rev. B 101, 014208 (2020)

Topologically ordered MBL

Sac

Topological MBL phase

Two MBL Hamiltonians H_0 and H_1 are in the same topological MBL phase iff one can continuously connect them via a path $H(\lambda)$ such that MBL is preserved along the path.

Symmetry-protected Topological MBL phase

Two MBL Hamiltonians H_0 and H_1 are in the same symmetry-protected topological MBL phase iff one can continuously connect them via a path $H(\lambda)$ such that MBL is preserved along the path, $H(\lambda) = u_g^{\otimes N} H(\lambda) u_g^{\dagger \otimes N}$.

SPT MBL in 1D

SPT MBL in 2D

Topologically ordered MBL

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Representation by Quantum Circuits

Goal $ilde{U}H ilde{U}^{\dagger}pprox\,$ diagonal matrix V_{N/ℓ} v_1 *v*₂ . . . $\tilde{U} =$ U_1 U_2 ſ error $\sim e^{-\ell/\xi_L}$

F. Pollmann, V. Khemani, J. I. Cirac, and S. L. Sondhi, Phys. Rev. B 94, 041116 (2016),

T. B. Wahl, A. Pal, and S. H. Simon, Phys. Rev. X 7, 021018 (2017)

SPT MBL in 1D

SPT MBL in 2D

Topologically ordered MBL

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Representation by Quantum Circuits

Goal $\tilde{U}H\tilde{U}^{\dagger}pprox$ diagonal matrix $v_{N/\ell}$ v_1 V_2 $|\tilde{\psi}_{h\dots h}\rangle =$. . . U_1 U_2 $l_1 l_2 l_3 l_4 \dots$ ſ error $\sim e^{-\ell/\xi_L}$

- F. Pollmann, V. Khemani, J. I. Cirac, and S. L. Sondhi, Phys. Rev. B 94, 041116 (2016),
- T. B. Wahl, A. Pal, and S. H. Simon, Phys. Rev. X 7, 021018 (2017)

Motivation	MBL formalism	SPT MBL in ID	SPT MBL in 2D	I opologically ordered MBL
	MPS		Quantum	ı Circuit
	Ground states		All eige	nstates
Translationally invariant, gapped		Disordered, many-body localized		

SPT MBL in 1D

SPT MBL in 2D

Topologically ordered MBL

Quantum Circuit	
All eigenstates	
Disordered, many-body localized	

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

 Motivation
 MBL formalism
 SPT MBL in 1D
 SPT MBL in 2D
 Topologically ordered MBL

 MBL topologial phase transition
 Scenario 1:
 Image: Comparison of the second s

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

S. Moudgalya, D. A. Huse, and V. Khemani, arXiv:2008.09113.R. Sahay, F. Machado, B. Ye, C. R. Laumann, and N. Y. Yao, Phys. Rev. Lett. **126** (2021).T. B. Wahl, F. Venn, and B. Béri, Phys. Rev. B **105**, 144205 (2022).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Intermediate Summary
 - In MBL systems, all eigenstates are area-law entangled
 - For symmetry-protected topological MBL, all eigenstates must have the same topological label
 - MBL gets destroyed when the topological label changes
 ⇒ different topological labels correspond to different
 symmetry-protected topological MBL phases

・ロト ・ 四ト ・ 日ト ・ 日 ・

Sac

Table of content

1 Motivation

- 2 Many-body localization formalism
- 3 Symmetry-protected topological MBL in 1D
- 4 Symmetry-protected topological MBL in 2D

5 Topologically ordered MBL

・ロト・西・・田・・田・・日・ ひゃう

◆□ ▶ < @ ▶ < E ▶ < E ▶ E • 9 < @</p>

In two dimensions

becomes ...

・ロト ・日下・ ・ ヨト・

590

≣⇒

In two dimensions

F. Pollmann, V. Khemani, J. I. Cirac, and S. L. Sondhi, Phys. Rev. B 94, 041116 (2016),

T. B. Wahl, A. Pal, and S. H. Simon, Nat. Phys. 15, 164 (2019)

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の < @

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

D. J. Williamson, N. Bultinck, M. Mariën, M. B. Şahinoğlu, J. Haegeman, and F. Verstraete, Phys. Rev. B 94, 205150 (2016), J. Li, A. Chan, and T. B. Wahl, Phys. Rev. B 102, 014205 (2020)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Classification Table

Classification using non-translationally invariant quantum circuits:

Symmetry (spin systems)	Topological classes
1D, time-reversal symmetry	\mathbb{Z}_2
1D, on-site symmetry G	$\mathcal{H}^2(G, U(1))$
2D, time-reversal symmetry	{0}
2D, on-site symmetry G	$\mathcal{H}^3(G, U(1))$

- T. B. Wahl, Phys. Rev. B 98, 054204 (2018).
- A. Chan and T. B. Wahl, J. Phys.: Cond. Mat. 32, 305601 (2020).
- J. Li, A. Chan, and T. B. Wahl, Phys. Rev. B 102, 014205 (2020).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Table of content

- 2 Many-body localization formalism
- 3 Symmetry-protected topological MBL in 1D
- 4 Symmetry-protected topological MBL in 2D
- 5 Topologically ordered MBL

Topologically ordered ground states

Example: Toric code

$$H = -\sum_{v} A_{v} - \sum_{p} B_{p}$$
$$[H, A_{v}] = [H, B_{p}] = [A_{v}, B_{p}] = 0$$

- four ground states on the torus: $|\psi_j
 angle, \ j=1,2,3,4$
- cannot be connected to product state via local unitary $U_{\rm loc}$: $|\psi_{\rm prod}\rangle \neq U_{\rm loc}|\psi_j\rangle$

Motivation MBL formalism SPT MBL in 1D SPT MBL in 2D Topologically ordered MBL Topologically ordered many-body localization

Example: Random coupling toric code

$$H = -\sum_{v} J_{v} A_{v} - \sum_{p} K_{p} B_{p}$$
$$H, A_{v}] = [H, B_{p}] = [A_{v}, B_{p}] = 0$$

[]

- four ground states on the torus: $|\psi_j
 angle, \ j=1,2,3,4$
- cannot be connected to product state via local unitary $U_{\rm loc}$: $|\psi_{\rm prod}\rangle \neq U_{\rm loc}|\psi_j\rangle$

Motivation MBL formalism SPT MBL in 1D SPT MBL in 2D Topologically ordered MBL Topologically ordered many-body localization

Example: Random coupling toric code

$$H = -\sum_{v} J_{v}A_{v} - \sum_{p} K_{p}B_{p}$$
$$H, A_{v}] = [H, B_{p}] = [A_{v}, B_{p}] = 0$$

Local integrals of motion:

$$\begin{split} H &= U H_{\text{diag}} U^{\dagger} \\ \tau_i^z &= U \sigma_i^z U^{\dagger} \\ [H, \tau_i^z] &= [\tau_i^z, \tau_j^z] = 0 \end{split}$$

Alternative choice:

$$S_i = A_v, B_p$$

 $\Rightarrow [H, S_i] = [S_i, S_j] = 0$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - 釣へ⊙

Topologically ordered many-body localization

SPT MBL in 1D

Example: Random coupling toric code + perturbation

$$H = -\sum_{\mathbf{v}} J_{\mathbf{v}} A_{\mathbf{v}} - \sum_{p} K_{p} B_{p} + \sum_{i} h_{i} \sigma_{i}$$
$$H, A_{\mathbf{v}}] = [H, B_{p}] = [A_{\mathbf{v}}, B_{p}] = 0$$

Topologically ordered MBL

Local integrals of motion:

Motivation

[/

$$\begin{split} H &= U H_{\text{diag}} U^{\dagger} \\ \tau_i^z &= U \sigma_i^z U^{\dagger} \\ [H, \tau_i^z] &= [\tau_i^z, \tau_j^z] = 0 \end{split}$$

MBL formalism

Alternative choice:

SPT MBL in 2D

$$S_i = A_v, B_p$$

 $\Rightarrow [H, S_i] = [S_i, S_j] = 0$

・ロト・西・・田・・田・・日・ ひゃう

Topologically ordered many-body localization

SPT MBL in 1D

SPT MBL in 2D

Example: Random coupling toric code + perturbation

$$H = -\sum_{v} J_{v} A_{v} - \sum_{p} K_{p} B_{p} + \sum_{i} h_{i} \sigma$$
$$[H, A_{v}] = [H, B_{p}] = [A_{v}, B_{p}] = 0$$

MBL formalism

Motivation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Topologically ordered MBL

Topological local integrals of motion: stabilizers S_i (Abelian, non-chiral) $T_i = U_{loc}S_iU_{loc}^{\dagger}$ $[H, T_i] = [T_i, T_j] = 0$ T. B. Wahl and B. Béri, Phys. Rev. Res. 2, 033099 (2020). T. B. Wahl, F. Venn, and Béri, arXiv:2111.11543.

All eigenstates are in same topological phase

Stable unless perturbations are strong enough to destroy MBL

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A. Kitaev, Ann. Phys. 303, 2 (2003)

$$H = -\sum_{v} J_{v} A_{v} - \sum_{p} K_{p} B_{p} + \sum_{i} h_{i} \sigma_{i}^{z}$$

with $J_{v}, K_{p} \sim \mathcal{N}(0, 1), \ h_{i} \sim \mathcal{N}(0, \sigma)$

A. Kitaev, Ann. Phys. 303, 2 (2003)

$$\begin{split} H &= -\sum_{v} J_{v} A_{v} - \sum_{p} K_{p} B_{p} + \sum_{i} h_{i} \sigma_{i}^{z} \end{split}$$
with $J_{v}, K_{p} \sim \mathcal{N}(0, 1), \ h_{i} \sim \mathcal{N}(0, \sigma)$

$$T_i = U_{\ell} S_i U_{\ell}^{\dagger}:$$

(i) $S_i = A_v, B_p$
(ii) $S_i = \sigma_i^z$

F. Venn, T. B. Wahl, and B. Béri, arXiv:2212.09775

・ロット (雪) (山) (山)

3

590

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Summary and Outlook

Summary:

- **SPT:** classification by second cohomology group in 1D, classification by third cohomology group in 2D
- Top. Order: extended definition of local integrals of motion
- All eigenstates are in the same topological phase
- This topological feature is protected by MBL

Summary and Outlook

Summary:

- **SPT:** classification by second cohomology group in 1D, classification by third cohomology group in 2D
- Top. Order: extended definition of local integrals of motion
- All eigenstates are in the same topological phase
- This topological feature is protected by MBL

Outlook:

- Are there topological features invisible in individual eigenstates (only encoded in the overall unitary)?
- What is the nature of the thermal phase separating topologically distinct MBL phases?

Thorsten B. Wahl, Phys. Rev. B **98**, 054204 (2018). Amos Chan and Thorsten B. Wahl, J. Phys.: Cond. Mat. **32**, 305601 (2020). Joey Li, Amos Chan, and Thorsten B. Wahl, Phys. Rev. B **102**, 014205 (2020). Thorsten B. Wahl and Benjamin Béri, Phys. Rev. Research **2**, 03309 (2020). Thorsten B. Wahl, Florian Venn, and Benjamin Béri, Phys. Rev. B **105**, 144205 (2022). Florian Venn, Thorsten B. Wahl, and Benjamin Béri, arXiv:2212.09775.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 のへで