A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

Shayan Zahedi

Group of Martin Zirnbauer Institute for Theoretical Physics University of Cologne

Tuebingen, 7th December 2023

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

ntroductior

Physical framework

he classification cheme

Homotopical computation tools

Result

Summary & Outlook

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

Goal and results

	Dimension d						
$ \nu $	1	2	3	4		Ę	5
			$m \ge 2$	m = 2	$m \ge 3$	m = 2	$m \ge 3$
0	\mathbb{Z}	0	Z	\mathbb{Z}_2	0	\mathbb{Z}_2	\mathbb{Z}
1	0	0	\mathbb{Z}	\mathbb{Z}_2	0	\mathbb{Z}_2	\mathbb{Z}
2	0	0	0		0		\mathbb{Z}
\geq 3	0	0	0		0		0

			d		
$ \nu $	1	2	3		
			m = 1	$m \ge 2$	
0	\mathbb{Z}	\mathbb{Z}	Z	*	
1	0	0		*	
≥ 2	0	0		0	

	d			
	1	2	3	
0	\mathbb{Z}	\mathbb{Z}	*	
2 2	0	0	0	

AIII/CII

AIII/BDI

Introduction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- **Motivation**
 - ``Frustration'' describes the situation where spins in a spin model cannot find an orientation to minimise the interaction energies with their neighbouring spins simultaneously¹

Figure: Antialignment of each spin in Heisenberg antiferromagnet (HAF) with nn interactions on a triangular lattice (a) is impossible. A cluster of three spins (b) forms a unique structure.

¹H.T. Diep. Frustrated Spin Systems. World Scientific, 2004, p. 2. < => = <> << > A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

Introduction

Physical framework

The classification scheme

Homotopical computation tools

Results

Motivation

- Ground states (GSs) of HAFs are determined by satisfying certain constraints in each cluster, e.g. zero total spin²
- Example Hamiltonian (J > 0)

$$H = J \sum_{\langle I, j \rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j} = rac{J}{2} \sum_{lpha} |\mathbf{L}_{lpha}|^{2} + c$$

with

$$\mathbf{L}_{\alpha} \coloneqq \sum_{i \in \alpha} \mathbf{S}_i$$

 ²Roderich Moessner and Arthur Ramirez. "Geometrical Frustration". In:

 Physics Today 59 (Feb. 2006).

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

Introduction

Physical framework

The classification scheme

Homotopical computation tools

Result

Maxwell counting argument

- The hallmark of frustration is a large **accidental** GS degeneracy
- Estimate³ $\nu := \#$ GS DOFs per unit cell = N M with
 - N := #Total spin DOFs per unit cell and
 - M := #Linearly independent GS constraints per unit cell

(a)

Figure: GSs of the pyrochlore (a) HAF are characterised by a vanishing total spin (b) in each tetrahedron and parameterised by $\nu = 2$ DOFs θ and ϕ .

³R. Moessner and J. T. Chalker. "Properties of a Classical Spin Liquid: The Heisenberg Pyrochlore Antiferromagnet". In: *Phys: Rev. Lett.* 80 (13 Mar. 1998). " A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

Introduction

Physical framework

he classification cheme

Homotopical computation tools

Results

Linearised degrees of freedom and constraints

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

Introduction

Physical framework

The classification scheme

Homotopical computation tools

Result

Summary & Outlook

- Néel ordered state is one of many GSs of the $J_1 J_2$ HAF on a square lattice⁴
- Expand around chosen GS → linearised DOFs come from plane (purple) perpendicular to fixed spin axis (black dot), i.e. tangent space to sphere (grey) S²

⁴Krishanu Roychowdhury and Michael J. Lawler. ``Classification of magnetic frustration and metamaterials from topology''. In: *Phys. Rev.* 898 (9 Sept. 2018). A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

Classification outline

- Classify topology of zero modes in frustrated systems as function of GS degeneracy homotopically⁵
- Origin of frustration: accidental degeneracy of zero modes → topological invariants
- Methods similar to derivation of Bott-Kitaev table
- E.g. flattening of singular values instead of spectral flattening of Hamiltonians

⁵Roychowdhury and Lawler, ``Classification of magnetic frustration and metamaterials from topology''.

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

Introduction

Physical framework

he classification

Homotopical computation tools

Result

Physical framework

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The spaces of linearised DOFs and constraints

- Z^d = Underlying lattice, and associate to each lattice position a C^N = Unit cell of linearised DOFs of a spin wave in a frustrated system
- Linearised degrees of freedom live in

$$egin{aligned} \mathcal{H}^{\mathsf{N}}_{d} &\coloneqq \ell^{2}\left(\mathbb{Z}^{d},\mathbb{C}^{\mathsf{N}}
ight) \ &= \left\{arphi \colon \mathbb{Z}^{d} o \mathbb{C}^{\mathsf{N}} \; \middle| \; \sum_{i=1}^{\mathsf{N}} \sum_{\mathbf{x} \in \mathbb{Z}^{d}} |arphi_{i}(\mathbf{x})|^{2} < \infty
ight\} \end{aligned}$$

- Models large GS degeneracy
- The GS constraints live in \mathcal{H}^M_d

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

ntroduction

Physical framework

The classification scheme

Homotopical computation tools

Result

Rigidity matrices

Rigidity operator

 $R: \mathcal{D}(R) \subseteq \mathcal{H}_d^N \to \mathcal{H}_d^M$ Linearised DOFs \to Constraints,

- Corresponding linearised Hamiltonian $H = R^{\dagger}R$ governing spin waves dynamics
- ker $H = \ker R$ contains the zero modes
- Topological classification of translation invariant rigidity operators → explore new varieties of frustration in which zero modes are demanded from topology⁶
- Classify the topology of zero modes in frustrated systems

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

Introduction

Physical framework

The classification scheme

Homotopical computation tools

Result

Rigidity matrices

- Fourier transform $F: \mathcal{H}_d^N \to \mathcal{K}_d^N := L^2(T^d, \mathbb{C}^N)$ turns R into multiplication operator FRF^{\dagger}
- Multiplication by the continuous based **rigidity matrix map** $r: T^d \to \mathbb{C}^{M \times N}$ on the Brillouin zone $T^d = \mathbb{R}^d / 2\pi \mathbb{Z}^d$
- rank $r \equiv \min(N, M)$ implements the linear independence assumption of GS constraints
- Gap condition: number of nonzero singular values is rank of the matrix and the only way a zero mode can be introduced and a gap closed is to reduce this rank
- Maxwell counting indices in terms of rigidity matrices, $\nu = \text{nullity } r - \text{nullity } r^{T}$ (rank-nullity theorem)

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

ntroduction

Physical framework

he classification cheme

Homotopical computation tools

Results

Summary & Outlook

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

Imposing time reversal symmetry (TRS)

- For time reversal symmetric frustrated systems we have $RT_1 = T_2R$ with $T_i^2 = \pm Id$ (both real or quaternionic structures)
- Its rigidity matrix map becomes \mathbb{Z}_2 -equivariant, i.e.

Label	TRS	\mathbb{Z}_2 -equivariance condition on r
Alll	no	trivial \mathbb{Z}_2 -equivariance
AIII/BDI	yes, $T_i^2 = + \mathrm{Id}$	$r\left(-\mathbf{k} ight)=\overline{r(\mathbf{k})}$
AllI/ClI	yes, $T_i^2 = -\mathrm{Id}$	$r(-\mathbf{k}) = (I_{M/2} \otimes \sigma_2) \overline{r(\mathbf{k})} (I_{N/2} \otimes \sigma_2)$

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

Introductior

Physical framework

The classification scheme

Homotopical computation tools

Result

Example: Triangular lattice HAF

- Triangular lattice $\Lambda := \mathbf{a}_1 \mathbb{Z} \oplus \mathbf{a}_2 \mathbb{Z}$ with $\mathbf{a}_1 = (1,0)$, $\mathbf{a}_2 = (1/2, \sqrt{3}/2)$
- The Hamiltonian (J > 0)

$$\begin{split} H &= J \sum_{\mathbf{x} \in \Lambda} \left(S_{\mathbf{x}} S_{\mathbf{x} + \mathbf{a}_1} + S_{\mathbf{x}} S_{\mathbf{x} + \mathbf{a}_2} + S_{\mathbf{x} + \mathbf{a}_1} S_{\mathbf{x} + \mathbf{a}_2} \right) \\ &= \frac{J}{2} \sum_{\mathbf{x} \in \Lambda} \left(S_{\mathbf{x}} + S_{\mathbf{x} + \mathbf{a}_1} + S_{\mathbf{x} + \mathbf{a}_2} \right)^2 + \text{const.} \end{split}$$

• GSs are defined by $L_{\mathbf{x}} = S_{\mathbf{x}} + S_{\mathbf{x}+\mathbf{a}_1} + S_{\mathbf{x}+\mathbf{a}_2} = 0$ for all $\mathbf{x} \in \Lambda$

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

Introductior

Physical framework

The classification scheme

Homotopical computation tools

Result

Example: Triangular lattice HAF

- Linearize the spins around spin axis in ground state with $(q, p) \mapsto (\cos(q)\sqrt{1-p^2}, \sin(q)\sqrt{1-p^2}, p)$
- Rigidity matrix in position space is defined by $L_{\mathbf{x}} = R \begin{pmatrix} q \\ p \end{pmatrix}$
- Momentum space representation is \mathbb{Z}_2 -equivariant

$$r(\mathbf{k}) = \begin{pmatrix} \frac{\sqrt{3}}{2} (e^{ik_y} - e^{ik_x}) & 0\\ 1 - \frac{1}{2} (e^{ik_x} + e^{ik_y}) & 0\\ 0 & 1 + e^{ik_x} + e^{ik_y} \end{pmatrix}$$

Symmetry class AIII/BDI and $\nu = -1$

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

Introduction

Physical framework

he classification cheme

Homotopical computation tools

Result

Example: Pyrochlore HAF

• Similar analysis leads to

$$r(\mathbf{k}) = \begin{pmatrix} 1 & -1 & 1 & -1 & 0 & 0 & 0 & 0 \\ 1 & -e^{ik_x} & e^{ik_y} & -e^{ik_z} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & e^{ik_x} & e^{ik_y} & e^{ik_z} \end{pmatrix}$$

• Symmetry class AIII/BDI and described by two individual $\nu=2$ systems

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

Introductior

Physical framework

The classification scheme

Homotopical computation tools

Result

The mapping space of rigidity matrices

- Define action of $\mathbb{Z}_2 = \{l, g\}$ on mapping space $C\left(T^d, [\mathbf{0}]; \mathbb{C}^{M \times N}, r_0\right)$ by conjugation $(g, r) \mapsto \left(\mathbf{k} \mapsto gr\left(g^{-1}\mathbf{k}\right)\right)$
- Z₂-fixed points C (T^d, [0]; C^{M×N}, r₀)^{Z₂} are Z₂-equivariant maps
- Subspace R^N_{dM} in which the singular value flattened maps are Z₂-equivariant and based too is the mapping space of rigidity matrices
- Based map condition

$$r(\mathbf{0}) = r_0 := \begin{cases} \begin{pmatrix} I_M & 0 \end{pmatrix} & \text{for } M \le N, \\ \begin{pmatrix} I_N \\ 0 \end{pmatrix} & \text{for } M \ge N, \end{cases}$$

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

Introductior

Physical framework

The classification scheme

Homotopical computation tools

Results

Summary & Outlook

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

Spectral flattening technique and classifying spaces

- Classification by the topological invariants R^N_{dM}/\sim (modulo \mathbb{Z}_2 -homotopy) classifying the topology of zero modes in frustrated systems
- There is a strong deformation retract (homotopy equivalence)

 $ilde{\mathsf{R}}^{\mathsf{N}}_{\mathsf{dM}}\cong C(T^{\mathsf{d}},[\mathbf{0}];\mathsf{V}_{\mathsf{n}}(\mathbb{C}^m),\mathsf{E})^{\mathbb{Z}_2}$

by linearly interpolating from the matrix of singular values to r_0 , with $m := \max(M, N)$, $n := \min(M, N)$ and $E := (e_1 \cdots e_n)$

• Classifying spaces are therefore Stiefel manifolds (homogeneous spaces)

$$V_{n}\left(\mathbb{F}^{m}
ight)\coloneqq\left\{\Lambda\in\mathbb{F}^{m imes n}\mid\Lambda^{\dagger}\Lambda=I_{n}
ight\}$$

for all $\mathbb{F} \in \{\mathbb{R},\mathbb{C},\mathbb{H}\}$

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

ntroductior

Physical framework

The classification scheme

Homotopical computation tools

Results

Topological invariants

 Strong (in the presence of disorder breaking translational symmetry) and weak topological invariants are contained in

 $\left[\left(T^{d},\left[\mathbf{0}\right]\right),\left(V_{n}\left(\mathbb{C}^{m}\right),E\right)\right]_{\mathbb{Z}_{2}}$

• Replacement of T^d by *d*-sphere $S^d \simeq I^d / \partial I^d$, with $I := [-\pi, \pi]$, gives the strong invariants⁷

$$\left[\left(I^{d},\partial I^{d}\right),\left(V_{n}\left(\mathbb{C}^{m}\right),E\right)\right]_{\mathbb{Z}_{2}}\cong\pi_{0}\left(\left(\Omega^{d}V_{n}\left(\mathbb{C}^{m}\right)\right)^{\mathbb{Z}_{2}}\right)$$

• *d*-fold iterated loop space of a based space (X, x₀) is

$$\Omega^{d}X := \left\{ f \colon I^{d} \to X \mid f\left(\partial I^{d}\right) = \left\{ x_{0} \right\} \right\}$$

In the absence of TRS we obtain as topological invariants

$$\left[\left(I^{d},\partial I^{d}\right),\left(V_{n}(\mathbb{C}^{m}),E\right)\right]=\pi_{d}\left(V_{n}(\mathbb{C}^{m})\right)$$

⁷Krishanu Roychowdhury et al. ``Supersymmetry on the lattice: Geometry, Topology, and Spin Liquids''. In: 2022. A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

Introductior

Physical framework

The classification scheme

Homotopical computation tools

Results

Comparing topological invariants

The time reversal related symmetries of Roychowdhury and Lawler (2018)⁸ lead to the topological invariants

$$\left[\left(I^{d}, \partial I^{d} \right), \left(V_{n}(\mathbb{C}^{m})^{\mathbb{Z}_{2}}, E \right) \right] \cong \pi_{d} \left(V_{n}(\mathbb{C}^{m})^{\mathbb{Z}_{2}} \right),$$

i.e. the higher homotopy groups of

$$V_{n}(\mathbb{C}^{m})^{\mathbb{Z}_{2}} \cong \begin{cases} V_{n}(\mathbb{C}^{m}) & \text{no symmetries,} \\ V_{n}(\mathbb{R}^{m}) & \text{for } I_{i}^{2} = +\mathrm{Id}, \\ V_{n/2}(\mathbb{H}^{m/2}) & \text{for } I_{i}^{2} = -\mathrm{Id}. \end{cases}$$

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

ntroduction

Physical framework

The classification scheme

Homotopical computation tools

Result

Reformulation with relative homotopy (groups)

In the presence of TRS we are inspired by R. Kennedy and M.R. Zirnbauer (2015, Lemma 5.13) and find

Lemma 1

For any \mathbb{Z}_2 -space X (D, d \geq 0),

$$\pi_{D}\left(\left(\Omega^{d+1}X\right)^{\mathbb{Z}_{2}}\right)\cong\pi_{D+1}\left(\Omega^{d}X,\left(\Omega^{d}X\right)^{\mathbb{Z}_{2}}\right).$$

Ingredient: reinterpret relative homotopy groups by $T \cong I^{D+1}$

• Our applications of Lemma 1 are for D = 0, $X = V_n(\mathbb{C}^m)$ and base point $E = (e_1 \cdots e_n)$

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

ntroductior

Physical framework

The classification scheme

Homotopical computation tools

Results

The homotopy sequence of a pair

For a based pair of spaces (X, A, x_0) the **boundary operator** $\partial : \pi_d(X, A) \rightarrow \pi_{d-1}(A)$ is defined by $\partial[f] := \left[f|_{I^{d-1} \times \{-\pi\}} \right]$ (a homomorphism for $d \ge 2$)

Restriction from l^3 onto $l^2 \times \{-\pi\} \cong l^2$

Theorem 2 (Dieck: Algebraic Topology, p. 123)

The following sequence is exact (d \geq 1).

Here, i_* and j_* are the induced canonical inclusions.

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

ntroduction

Physical framework

The classification scheme

Homotopical computation tools

Results

An Algorithm ($X = V_n(\mathbb{C}^m), \Omega^d_{(\mathbb{Z}_2)} \equiv (\Omega^d X)^{(\mathbb{Z}_2)}$) $[(I^d, \partial I^d), (X, E)]_{\mathbb{Z}_2}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

An Algorithm ($X = V_n(\mathbb{C}^m), \Omega^d_{(\mathbb{Z}_2)} \equiv (\Omega^d X)^{(\mathbb{Z}_2)}$) $[(I^d, \partial I^d), (X, x_0)]_{\mathbb{Z}_2}$ $\downarrow^{\mathbb{R}^2}_{\pi_1(\Omega^{d-1}, \Omega^{d-1}_{\mathbb{Z}_2})}$

▲ロト ▲団ト ▲目ト ▲目ト 三目 - の々で

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ◆○◆

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ◆○◆

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○□ のへで

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○□ のへで

In the absence of TRS ($|\nu| = m - n$) AIII

Displayed are $\pi_d \left(V_{m-|\nu|} \left(\mathbb{C}^m \right) \right)^{9}$

	Dimension d						
$ \nu $	1	2	3	4		ŧ	5
			$m \ge 2$	$m=2$ $m\geq 3$		m = 2	$m \ge 3$
0	\mathbb{Z}	0	Z	\mathbb{Z}_2	0	\mathbb{Z}_2	Z
1	0	0	\mathbb{Z}	\mathbb{Z}_2	0	\mathbb{Z}_2	\mathbb{Z}
2	0	0	0		0		\mathbb{Z}
\geq 3	0	0	0		0		0

• The case $\pi_d(U(1)) = \pi_d(S^1) = 0$ for all $d \ge 2$ is not explicitly contained in this table from $d \ge 3$

⁹Maurice E. Gilmore. "Complex Stiefel Manifolds, some homotopy groups and vector fields". In: Bulletin of the American Mathematical Society 73.5 (1967); Mamoru Mimura and Hiroshi Toda. "Homotopy groups of symplectic groups". In: Journal of Mathematics of Kyoto University 3.2 (1963); A. Hatcher. Algebraic Topology. Algebraic Topology. Cambridge University Press, 2002, p. 339.

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

ntroductior

Physical framework

The classification scheme

Homotopical computation tools

Results

In the presence of TRS

Displayed are $\left[\left(I^{d}, \partial I^{d} \right), \left(V_{m-|\nu|}(\mathbb{C}^{m}), E \right) \right]_{\mathbb{Z}_{2}}$

	d					
$ \nu $	1	2	3			
			m = 1	$m \ge 2$		
0	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	*		
1	0	0		*		
≥ 2	0	0		0		

AIII/BDI

AIII/CII

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

ntroductior

Physical framework

The classification scheme

Homotopical computation tools

Results

Summary & Outlook

- * = yet to be evaluated strong topological invariants which indicate emergence of unstable regime
- There is trivial regime $[(I^d, \partial I^d), (V_{m-|\nu|}(\mathbb{C}^m), E)]_{\mathbb{Z}_2} = 0$ for $|\nu| \ge \lceil d/2 \rceil$ and the unstable regime for $|\nu| < \lceil d/2 \rceil$
- In AIII/BDI we always have $[(l^d, \partial l^d), (S^1, 1)]_{\mathbb{Z}_2} \cong \mathbb{Z}$ for all $d \ge 1$

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

Example: The $J_1 - J_2$ HAF on a square lattice

 $\rightarrow \text{ Class AIII/BDI}$

- \rightarrow We have the integers d = 2 and N = 2
- → In Néel state: M = 6, at critical point (highly frustrated): M = 2, in frustrated state: $M = 4^{10}$
- ightarrow Classifying spaces are $V_2(\mathbb{C}^6)$, U(2) and $V_2(\mathbb{C}^4)$, respectively
- $ightarrow\,$ 0, $\mathbb Z$ and 0, respectively

¹⁰Roychowdhury and Lawler, "Classification of magnetic frustration and metamaterials from topology".

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

ntroductior

Physical framework

The classification scheme

Homotopical computation tools

Results

Summary & Outlook

- $\rightarrow\,$ Homotopical classification of zero modes in frustrated systems in presence or absence of canonical TRS
- \rightarrow Describe all zero modes in the framework of rigidity operators *R* (ker *R* = Space of zero modes)
- → \exists Nonisostatic systems ($\nu \neq 0$) with nontrivial topological invariants; beyond original Kane and Lubensky¹¹ isostatic class $\nu = 0$
- ightarrow Novel topological invariants in presence of canonical TRS compared to Roychowdhury and Lawler (2018)
- \rightarrow Further symmetry classes, e.g. AIII/CI ($r(-\mathbf{k}) = r(\mathbf{k})^T$) and AIII/DIII ($r(-\mathbf{k}) = -r(\mathbf{k})^T$)¹²

¹²Roychowdhury et al., "Supersymmetry on the lattice: Geometry, Topology, and Spin Liquids".

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

A Topological Classification of Time Reversal Symmetric Frustrated Systems and Metamaterials

ntroductior

Physical framework

he classification cheme

Homotopical computation tools

Results

¹¹C. L. Kane and T. C. Lubensky. "Topological boundary modes in isostatic lattices". In: *Nature Physics* 10.1 (Dec. 2013).

Thank you

zahedi@thp.uni-koeln.de

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?